第60步 深度学习图像识别:误判病例分析(Pytorch)

基于WIN10的64位系统演示

一、写在前面

上期内容基于Tensorflow环境做了误判病例分析(传送门),考虑到不少模型在Tensorflow环境没有迁移学习的预训练模型,因此有必要在Pytorch环境也搞搞误判病例分析。

本期以SqueezeNet模型为例,因为它建模速度快。

同样,基于GPT-4辅助编程,后续会分享改写过程。

二、误判病例分析实战

继续使用胸片的数据集:肺结核病人和健康人的胸片的识别。其中,肺结核病人700张,健康人900张,分别存入单独的文件夹中。

(a)直接分享代码

######################################导入包###################################
# 导入必要的包
import copy
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision import models
from torch.utils.data import DataLoader
from torch import optim, nn
from torch.optim import lr_scheduler
import os
import matplotlib.pyplot as plt
import warnings
import numpy as np

warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

# 设置GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


################################导入数据集#####################################
import torch
from torchvision import datasets, transforms
from torch.nn.functional import softmax
import os
from PIL import Image
import pandas as pd
import torch.nn as nn
import timm
from torch.optim import lr_scheduler

# 自定义的数据集类
class ImageFolderWithPaths(datasets.ImageFolder):
    def __getitem__(self, index):
        original_tuple = super(ImageFolderWithPaths, self).__getitem__(index)
        path = self.imgs[index][0]
        tuple_with_path = (original_tuple + (path,))
        return tuple_with_path

# 数据集路径
data_dir = "./MTB"

# 图像的大小
img_height = 256
img_width = 256

# 数据预处理
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(img_height),
        transforms.RandomHorizontalFlip(),
        transforms.RandomVerticalFlip(),
        transforms.RandomRotation(0.2),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize((img_height, img_width)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

# 加载数据集
full_dataset = ImageFolderWithPaths(data_dir, transform=data_transforms['train'])

# 获取数据集的大小
full_size = len(full_dataset)
train_size = int(0.8 * full_size)  # 假设训练集占70%
val_size = full_size - train_size  # 验证集的大小

# 随机分割数据集
torch.manual_seed(0)  # 设置随机种子以确保结果可重复
train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])

# 应用数据增强到训练集和验证集
train_dataset.dataset.transform = data_transforms['train']
val_dataset.dataset.transform = data_transforms['val']

# 创建数据加载器
batch_size = 32
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=0)


dataloaders = {'train': train_dataloader, 'val': val_dataloader}
dataset_sizes = {'train': len(train_dataset), 'val': len(val_dataset)}
class_names = full_dataset.classes

# 获取数据集的类别
class_names = full_dataset.classes

# 保存预测结果的列表
results = []

###############################定义SqueezeNet模型################################
# 定义SqueezeNet模型
model = models.squeezenet1_1(pretrained=True)  # 这里以SqueezeNet 1.1版本为例
num_ftrs = model.classifier[1].in_channels

# 根据分类任务修改最后一层
model.classifier[1] = nn.Conv2d(num_ftrs, len(class_names), kernel_size=(1,1))

# 修改模型最后的输出层为我们需要的类别数
model.num_classes = len(class_names)

model = model.to(device)

# 打印模型摘要
print(model)


#############################编译模型#########################################
# 定义损失函数
criterion = nn.CrossEntropyLoss()

# 定义优化器
optimizer = torch.optim.Adam(model.parameters())

# 定义学习率调度器
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

# 开始训练模型
num_epochs = 5

# 初始化记录器
train_loss_history = []
train_acc_history = []
val_loss_history = []
val_acc_history = []

for epoch in range(num_epochs):
    print('Epoch {}/{}'.format(epoch, num_epochs - 1))
    print('-' * 10)

    # 每个epoch都有一个训练和验证阶段
    for phase in ['train', 'val']:
        if phase == 'train':
            model.train()  # 设置模型为训练模式
        else:
            model.eval()   # 设置模型为评估模式

        running_loss = 0.0
        running_corrects = 0

        # 遍历数据
        for inputs, labels, paths in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)

            # 零参数梯度
            optimizer.zero_grad()

            # 前向
            with torch.set_grad_enabled(phase == 'train'):
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                loss = criterion(outputs, labels)

                # 只在训练模式下进行反向和优化
                if phase == 'train':
                    loss.backward()
                    optimizer.step()

            # 统计
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)

        epoch_loss = running_loss / dataset_sizes[phase]
        epoch_acc = (running_corrects.double() / dataset_sizes[phase]).item()

        # 记录每个epoch的loss和accuracy
        if phase == 'train':
            train_loss_history.append(epoch_loss)
            train_acc_history.append(epoch_acc)
        else:
            val_loss_history.append(epoch_loss)
            val_acc_history.append(epoch_acc)

        print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))

    print()

# 保存模型
torch.save(model.state_dict(), 'SqueezeNet_model-1.pth')

# 加载最佳模型权重
#model.load_state_dict(best_model_wts)
#torch.save(model, 'shufflenet_best_model.pth')
#print("The trained model has been saved.")
###########################误判病例分析#################################
# 导入 os 库
import os

# 使用模型对训练集和验证集中的所有图片进行预测,并保存预测结果
for phase in ['train', 'val']:
    for inputs, labels, paths in dataloaders[phase]:  # 在这里添加 paths
        inputs = inputs.to(device)
        labels = labels.to(device)

        # 使用模型对这一批图片进行预测
        outputs = model(inputs)
        probabilities = softmax(outputs, dim=1)
        _, predictions = torch.max(outputs, 1)

        # 遍历这一批图片
        for i, path in enumerate(paths):  # 在这里添加 path 和 enumerate 函数
            # 获取图片的名称、标签、预测值和概率
            image_name = os.path.basename(path)  # 使用 os.path.basename 函数获取图片名称
            original_label = class_names[labels[i]]
            prediction = predictions[i]
            probability = probabilities[i]

            # 根据预测结果和真实标签,判定图片所属的组别
            group = None
            if original_label == "Tuberculosis" and probability[1] >= 0.5:
                group = "A"
            elif original_label == "Normal" and probability[1] < 0.5:
                group = "B"
            elif original_label == "Normal" and probability[1] >= 0.5:
                group = "C"
            elif original_label == "Tuberculosis" and probability[1] < 0.5:
                group = "D"

            # 将结果添加到结果列表中
            results.append({
                "原始图片的名称": image_name,
                "属于训练集还是验证集": phase,
                "预测为Tuberculosis的概率值": probability[1].item(),
                "判定的组别": group
            })

# 将结果保存为Pandas DataFrame,然后保存到csv文件
result_df = pd.DataFrame(results)
result_df.to_csv("result-2.csv", index=False)

跟Tensorflow改写的类似,主要有两处变化:

(1)导入数据集部分:而在误判病例分析中,我们需要知道每一张图片的名称、被预测的结果等详细信息因此需要加载图片路径和图片名称的信息。

(2)误判病例分析部分:也就是需要知道哪些预测正确,哪些预测错误。

(b)调教GPT-4的过程

(b1)咒语:请根据{代码1},改写和续写《代码2》。代码1:{也就是之前用tensorflow写的误判病例分析部分};代码2:《也就是修改之前的SqueezeNet模型建模代码》

还是列出来吧:

代码1:

# 训练模型后,现在使用模型对所有图片进行预测,并保存预测结果到csv文件中
import pandas as pd

# 保存预测结果的dataframe
result_df = pd.DataFrame(columns=["原始图片的名称", "属于训练集还是验证集", "预测为Tuberculosis的概率值", "判定的组别"])

# 对训练集和验证集中的每一批图片进行预测
for dataset, dataset_name in zip([train_ds_with_filenames, val_ds_with_filenames], ["训练集", "验证集"]):
    for images, labels, paths in dataset:
        # 使用模型对这一批图片进行预测
        probabilities = model.predict(images)
        predictions = tf.math.argmax(probabilities, axis=-1)

        # 遍历这一批图片
        for path, label, prediction, probability in zip(paths, labels, predictions, probabilities):
            # 获取图片名称和真实标签
            image_name = path.numpy().decode("utf-8").split('/')[-1]
            original_label = class_names[label]

            # 根据预测结果和真实标签,判定图片所属的组别
            group = None
            if original_label == "Tuberculosis" and probability[1] >= 0.5:
                group = "A"
            elif original_label == "Normal" and probability[1] < 0.5:
                group = "B"
            elif original_label == "Normal" and probability[1] >= 0.5:
                group = "C"
            elif original_label == "Tuberculosis" and probability[1] < 0.5:
                group = "D"

            # 将结果添加到dataframe中
            result_df = result_df.append({
                "原始图片的名称": image_name,
                "属于训练集还是验证集": dataset_name,
                "预测为Tuberculosis的概率值": probability[1],
                "判定的组别": group
            }, ignore_index=True)

# 保存结果到csv文件
result_df.to_csv("result.csv", index=False)

代码2:

######################################导入包###################################
# 导入必要的包
import copy
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision import models
from torch.utils.data import DataLoader
from torch import optim, nn
from torch.optim import lr_scheduler
import os
import matplotlib.pyplot as plt
import warnings
import numpy as np

warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

# 设置GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


################################导入数据集#####################################
import torch
from torchvision import datasets, transforms
import os

# 数据集路径
data_dir = "./MTB"

# 图像的大小
img_height = 256
img_width = 256

# 数据预处理
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(img_height),
        transforms.RandomHorizontalFlip(),
        transforms.RandomVerticalFlip(),
        transforms.RandomRotation(0.2),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize((img_height, img_width)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

# 加载数据集
full_dataset = datasets.ImageFolder(data_dir)

# 获取数据集的大小
full_size = len(full_dataset)
train_size = int(0.7 * full_size)  # 假设训练集占80%
val_size = full_size - train_size  # 验证集的大小

# 随机分割数据集
torch.manual_seed(0)  # 设置随机种子以确保结果可重复
train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])

# 将数据增强应用到训练集
train_dataset.dataset.transform = data_transforms['train']

# 创建数据加载器
batch_size = 32
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=4)

dataloaders = {'train': train_dataloader, 'val': val_dataloader}
dataset_sizes = {'train': len(train_dataset), 'val': len(val_dataset)}
class_names = full_dataset.classes


###############################定义TNT模型################################
# 导入必要的库
import torch.nn as nn
import timm

# 定义Bottleneck Transformer模型
model = timm.create_model('botnet26t_256', pretrained=True)  # 你可以选择适合你需求的BotNet版本
num_ftrs = model.feature_info[-1]['num_chs']

# 根据分类任务修改最后一层
model.head.fc = nn.Linear(num_ftrs, len(class_names))

# 将模型移至指定设备
model = model.to(device)

# 打印模型摘要
print(model)


#############################编译模型#########################################
# 定义损失函数
criterion = nn.CrossEntropyLoss()

# 定义优化器
optimizer = optim.Adam(model.parameters())

# 定义学习率调度器
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

# 开始训练模型
num_epochs = 20

# 初始化记录器
train_loss_history = []
train_acc_history = []
val_loss_history = []
val_acc_history = []

for epoch in range(num_epochs):
    print('Epoch {}/{}'.format(epoch, num_epochs - 1))
    print('-' * 10)

    # 每个epoch都有一个训练和验证阶段
    for phase in ['train', 'val']:
        if phase == 'train':
            model.train()  # 设置模型为训练模式
        else:
            model.eval()   # 设置模型为评估模式

        running_loss = 0.0
        running_corrects = 0

        # 遍历数据
        for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)

            # 零参数梯度
            optimizer.zero_grad()

            # 前向
            with torch.set_grad_enabled(phase == 'train'):
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                loss = criterion(outputs, labels)

                # 只在训练模式下进行反向和优化
                if phase == 'train':
                    loss.backward()
                    optimizer.step()

            # 统计
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)

        epoch_loss = running_loss / dataset_sizes[phase]
        epoch_acc = (running_corrects.double() / dataset_sizes[phase]).item()

        # 记录每个epoch的loss和accuracy
        if phase == 'train':
            train_loss_history.append(epoch_loss)
            train_acc_history.append(epoch_acc)
        else:
            val_loss_history.append(epoch_loss)
            val_acc_history.append(epoch_acc)

        print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))

    print()

# 保存模型
torch.save(model.state_dict(), 'tnt_dit_model.pth')

GPT-4回复:

代码2的改写版本如下:

首先,我们需要为PyTorch添加类别名称,以便我们在生成结果时可以进行映射,然后创建一个列表来存储预测结果。

################################导入数据集#####################################
...
# 获取数据集的类别
class_names = full_dataset.classes
# 保存预测结果的列表
results = []

接着,我们在进行预测时,为了获取每个样本的概率,我们需要使用torch.nn.functional.softmax()函数,同时还需要将预测值与0.5比较,以判定组别。最后,我们使用Pandas将预测结果保存为CSV文件。

import pandas as pd
from torch.nn.functional import softmax

# 使用模型对训练集和验证集中的所有图片进行预测,并保存预测结果
for phase in ['train', 'val']:
    for inputs, labels in dataloaders[phase]:
        inputs = inputs.to(device)
        labels = labels.to(device)

        # 使用模型对这一批图片进行预测
        outputs = model(inputs)
        probabilities = softmax(outputs, dim=1)
        _, predictions = torch.max(outputs, 1)

        # 遍历这一批图片
        for i in range(inputs.size(0)):
            # 获取图片的名称、标签、预测值和概率
            image_name = dataloaders[phase].dataset.dataset.samples[i][0].split('/')[-1]
            original_label = class_names[labels[i]]
            prediction = predictions[i]
            probability = probabilities[i]

            # 根据预测结果和真实标签,判定图片所属的组别
            group = None
            if original_label == "Tuberculosis" and probability[1] >= 0.5:
                group = "A"
            elif original_label == "Normal" and probability[1] < 0.5:
                group = "B"
            elif original_label == "Normal" and probability[1] >= 0.5:
                group = "C"
            elif original_label == "Tuberculosis" and probability[1] < 0.5:
                group = "D"

            # 将结果添加到结果列表中
            results.append({
                "原始图片的名称": image_name,
                "属于训练集还是验证集": phase,
                "预测为Tuberculosis的概率值": probability[1].item(),
                "判定的组别": group
            })

# 将结果保存为Pandas DataFrame,然后保存到csv文件
result_df = pd.DataFrame(results)
result_df.to_csv("result.csv", index=False)

我们看看“result.csv”文件是否符合我们的要求:

 

问题很明显,分组全是“Normal”!!!

(b2)咒语:为什么输出的“原始图片的名车”全部是“MTB\Normal\”,完全没有“Tuberculosis”?

GPT-4回复:

在PyTorch中,当我们使用torchvision的datasets.ImageFolder载入数据时,数据被按照文件夹的顺序进行排序,所以获取图片名称时,我们只是在循环中按顺序获取了数据集中的图片路径。这可能会在对验证集进行预测时出现问题,因为我们使用了random_split函数对数据进行了随机划分,而获取图片路径的方式并未考虑到这个随机性。

为了解决这个问题,你可以试试将图片路径也保存在数据加载器中。在这里,我假设你的训练集和验证集是以文件夹的形式存储的,每个文件夹的名字就是类别的名称。以下是一个简单的自定义数据集类,它可以在加载数据的同时获取每个图片的路径:

from torch.utils.data import Dataset
from PIL import Image

class ImageFolderWithPaths(Dataset):
    def __init__(self, image_folder, transform=None):
        self.image_folder = image_folder
        self.transform = transform
        self.image_paths = list(map(lambda x: x[0], image_folder.imgs))

    def __getitem__(self, index):
        original_tuple = self.image_folder.imgs[index]
        path = original_tuple[0]
        image = Image.open(path).convert("RGB")
        if self.transform is not None:
            image = self.transform(image)
        
        return (image, original_tuple[1], path)

    def __len__(self):
        return len(self.image_folder.imgs)

你可以这样使用这个数据集类:

# 创建原始的ImageFolder数据集
original_dataset = datasets.ImageFolder(data_dir, transform=data_transforms['train'])

# 使用我们的自定义数据集类,获取图片路径
full_dataset = ImageFolderWithPaths(original_dataset, transform=data_transforms['train'])

# 现在,你的数据加载器在每次迭代时都会返回图片、标签和图片路径
for images, labels, paths in dataloader:
    ...

看得懂怎么改写代码不?看不懂也不要紧,继续:

(b3)咒语:帮我在这个代码上改写和更新,并展示所有代码:{复制代码}

GPT-4回复:

import torch
from torchvision import datasets, transforms
from torch.nn.functional import softmax
import os
from PIL import Image
import pandas as pd
import torch.nn as nn
import timm
from torch.optim import lr_scheduler

# 自定义的数据集类
class ImageFolderWithPaths(datasets.ImageFolder):
    def __getitem__(self, index):
        original_tuple = super(ImageFolderWithPaths, self).__getitem__(index)
        path = self.imgs[index][0]
        tuple_with_path = (original_tuple + (path,))
        return tuple_with_path

# 数据集路径
data_dir = "./MTB"

# 图像的大小
img_height = 256
img_width = 256

# 数据预处理
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(img_height),
        transforms.RandomHorizontalFlip(),
        transforms.RandomVerticalFlip(),
        transforms.RandomRotation(0.2),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize((img_height, img_width)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

# 加载数据集
full_dataset = ImageFolderWithPaths(data_dir, transform=data_transforms['train'])

# 获取数据集的大小
full_size = len(full_dataset)
train_size = int(0.7 * full_size)  # 假设训练集占70%
val_size = full_size - train_size  # 验证集的大小

# 随机分割数据集
torch.manual_seed(0)  # 设置随机种子以确保结果可重复
train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])

# 应用数据增强到训练集和验证集
train_dataset.dataset.transform = data_transforms['train']
val_dataset.dataset.transform = data_transforms['val']

# 创建数据加载器
batch_size = 32
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=4)

dataloaders = {'train': train_dataloader, 'val': val_dataloader}
dataset_sizes = {'train': len(train_dataset), 'val': len(val_dataset)}
class_names = full_dataset.classes

# 获取数据集的类别
class_names = full_dataset.classes

# 保存预测结果的列表
results = []

###############################定义TNT模型################################
# 定义Bottleneck Transformer模型
model = timm.create_model('botnet26t_256', pretrained=True)  # 你可以选择适合你需求的BotNet版本
num_ftrs = model.feature_info[-1]['num_chs']

# 根据分类任务修改最后一层
model.head.fc = nn.Linear(num_ftrs, len(class_names))

# 将模型移至指定设备
model = model.to(device)

# 打印模型摘要
print(model)


#############################编译模型#########################################
# 定义损失函数
criterion = nn.CrossEntropyLoss()

# 定义优化器
optimizer = torch.optim.Adam(model.parameters())

# 定义学习率调度器
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

# 开始训练模型
num_epochs = 4

# 初始化记录器
train_loss_history = []
train_acc_history = []
val_loss_history = []
val_acc_history = []

for epoch in range(num_epochs):
    print('Epoch {}/{}'.format(epoch, num_epochs - 1))
    print('-' * 10)

    # 每个epoch都有一个训练和验证阶段
    for phase in ['train', 'val']:
        if phase == 'train':
            model.train()  # 设置模型为训练模式
        else:
            model.eval()   # 设置模型为评估模式

        running_loss = 0.0
        running_corrects = 0

        # 遍历数据
        for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)

            # 零参数梯度
            optimizer.zero_grad()

            # 前向
            with torch.set_grad_enabled(phase == 'train'):
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                loss = criterion(outputs, labels)

                # 只在训练模式下进行反向和优化
                if phase == 'train':
                    loss.backward()
                    optimizer.step()

            # 统计
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)

        epoch_loss = running_loss / dataset_sizes[phase]
        epoch_acc = (running_corrects.double() / dataset_sizes[phase]).item()

        # 记录每个epoch的loss和accuracy
        if phase == 'train':
            train_loss_history.append(epoch_loss)
            train_acc_history.append(epoch_acc)
        else:
            val_loss_history.append(epoch_loss)
            val_acc_history.append(epoch_acc)

        print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))

    print()

# 保存模型
torch.save(model.state_dict(), 'bonet_dit_model-1.pth')

# 加载最佳模型权重
#model.load_state_dict(best_model_wts)
#torch.save(model, 'shufflenet_best_model.pth')
#print("The trained model has been saved.")
###########################误判病例分析#################################
# 使用模型对训练集和验证集中的所有图片进行预测,并保存预测结果
for phase in ['train', 'val']:
    for inputs, labels, paths in dataloaders[phase]:
        inputs = inputs.to(device)
        labels = labels.to(device)

        # 使用模型对这一批图片进行预测
        outputs = model(inputs)
        probabilities = softmax(outputs, dim=1)
        _, predictions = torch.max(outputs, 1)

        # 遍历这一批图片
        for i in range(inputs.size(0)):
            # 获取图片的名称、标签、预测值和概率
            image_name = os.path.basename(paths[i])
            original_label = class_names[labels[i]]
            prediction = predictions[i]
            probability = probabilities[i]

            # 根据预测结果和真实标签,判定图片所属的组别
            if original_label == class_names[prediction]:
                group = 'correct'  # 正确预测的图片
            else:
                group = 'misclassified'  # 错误预测的图片

            # 将结果保存为字典
            result = {
                'image': image_name,
                'label': original_label,
                'prediction': class_names[prediction],
                'probability': probability,
                'group': group
            }

            # 将字典添加到结果列表中
            results.append(result)

# 将结果列表保存为数据框,并输出为csv文件
results_df = pd.DataFrame(results)
results_df.to_csv('classification_results.csv', index=False)

运行,报错,哈哈哈:

(b4)咒语:报错:Traceback (most recent call last): File "<string>", line 1, in <module>File "C:\ProgramData\Anaconda3\envs\Pytorch\lib\multiprocessing\spawn.py", line 116, in spawn_main exitcode = _main(fd, parent_sentinel)

  File "C:\ProgramData\Anaconda3\envs\Pytorch\lib\multiprocessing\spawn.py", line 126, in _main self = reduction.pickle.load(from_parent)

AttributeError: Can't get attribute 'ImageFolderWithPaths' on <module '__main__' (built-in)>

GPT-4回复:

 

 继续报错,继续问:Traceback (most recent call last):

  File "C:\Users\Administrator\AppData\Local\Temp\ipykernel_19344\1832509689.py", line 146, in <cell line: 131>

    for inputs, labels in dataloaders[phase]:

ValueError: too many values to unpack (expected 2)

GPT-4回答:

 

最后能运行了,又回到(b2)的问题:为什么输出的“原始图片的名称”全部是“MTB\Normal\”,完全没有“Tuberculosis”???一脸蒙蔽,无奈我又问了TA一次。

(b4)咒语:为什么输出的“原始图片的名车”还全部是“MTB\Normal\”,完全没有“Tuberculosis”????请显示完整的代码以解决这个问题。

GPT-4这回给出正确答案:

# 导入 os 库
import os

# 使用模型对训练集和验证集中的所有图片进行预测,并保存预测结果
for phase in ['train', 'val']:
    for inputs, labels, paths in dataloaders[phase]:  # 在这里添加 paths
        inputs = inputs.to(device)
        labels = labels.to(device)

        # 使用模型对这一批图片进行预测
        outputs = model(inputs)
        probabilities = softmax(outputs, dim=1)
        _, predictions = torch.max(outputs, 1)

        # 遍历这一批图片
        for i, path in enumerate(paths):  # 在这里添加 path 和 enumerate 函数
            # 获取图片的名称、标签、预测值和概率
            image_name = os.path.basename(path)  # 使用 os.path.basename 函数获取图片名称
            original_label = class_names[labels[i]]
            prediction = predictions[i]
            probability = probabilities[i]

            # 根据预测结果和真实标签,判定图片所属的组别
            group = None
            if original_label == "Tuberculosis" and probability[1] >= 0.5:
                group = "A"
            elif original_label == "Normal" and probability[1] < 0.5:
                group = "B"
            elif original_label == "Normal" and probability[1] >= 0.5:
                group = "C"
            elif original_label == "Tuberculosis" and probability[1] < 0.5:
                group = "D"

            # 将结果添加到结果列表中
            results.append({
                "原始图片的名称": image_name,
                "属于训练集还是验证集": phase,
                "预测为Tuberculosis的概率值": probability[1].item(),
                "判定的组别": group
            })

# 将结果保存为Pandas DataFrame,然后保存到csv文件
result_df = pd.DataFrame(results)
result_df.to_csv("result-2.csv", index=False)

总结:现在来看,改写过程中出问题大概率是图片的路径提取中出了问题。核心咒语还是一样的:{以0.5为阈值,因此可以样本分为三份:(a)本来就是Tuberculosis的图片,预测为Tuberculosis的概率值大于等于0.5,则说明预测正确,判定为A组;(b)本来就是Normal的图片,预测为Tuberculosis的概率值小于0.5,则说明预测正确,判定为B组;(c)本来就是Normal的图片,预测为Tuberculosis的概率值大于等于0.5,则说明预测错误,判定为C组;(d)本来就是Tuberculosis的图片,预测为Tuberculosis的概率值小于0.5,则说明预测正确,判定为D组;},剩余的就跟GPT-4对线,出了问题及时且准确的进行反馈,这很重要!!!

三、输出结果

 有了这个表,又可以水不少图了。

四、数据

链接:https://pan.baidu.com/s/15vSVhz1rQBtqNkNp2GQyVw?pwd=x3jf

提取码:x3jf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/96840.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

uniapp 配置网络请求并使用请求轮播图

由于平台的限制&#xff0c;小程序项目中不支持 axios&#xff0c;而且原生的 wx.request() API 功能较为简单&#xff0c;不支持拦截器等全局定制的功能。因此&#xff0c;建议在 uni-app 项目中使用 escook/request-miniprogram 第三方包发起网络数据请求。 官方文档&#xf…

FPGA原理与结构——时钟IP核原理学习

一、前言 在之前的文章中&#xff0c;我们介绍了FPGA的时钟结构 FPGA原理与结构——时钟资源https://blog.csdn.net/apple_53311083/article/details/132307564?spm1001.2014.3001.5502 在本文中我们将学习xilinx系列的FPGA所提供的时钟IP核&#xff0c;来帮助我们进一…

数学建模:主成分分析法

&#x1f506; 文章首发于我的个人博客&#xff1a;欢迎大佬们来逛逛 主成分分析法 算法流程 构建原始数据矩阵 X X X &#xff0c;其中矩阵的形状为 x ∗ n x * n x∗n &#xff0c;有 m m m 个对象&#xff0c; n n n 个评价指标。然后进行矩阵的归一化处理。首先计算矩…

从过滤器初识责任链设计模式

下面用的过滤器都是注解方式 可以使用非注解方式,就是去web.xml配置映射关系 上面程序的执行输出是 再加一个过滤器 下面来看一段程序 输出结果 和过滤器是否非常相识 但是上面这段程序存在的问题:在编译阶段已经完全确定了调用关系,如果你想改变他们的调用顺序或者继续添加一…

ADRV9009子卡 设计原理图:FMCJ450-基于ADRV9009的双收双发射频FMC子卡 便携测试设备

FMCJ450-基于ADRV9009的双收双发射频FMC子卡 一、板卡概述 ADRV9009是一款高集成度射频(RF)、捷变收发器&#xff0c;提供双通道发射器和接收器、集成式频率合成器以及数字信号处理功能。北京太速科技&#xff0c;这款IC具备多样化的高性能和低功耗组合&#xff0c;FMC子…

uniapp的 picker 日期时间选择器

效果图&#xff1a; dateTimePicker.js function withData(param){return param < 10 ? 0 param : param; } function getLoopArray(start,end){var start start || 0;var end end || 1;var array [];for (var i start; i < end; i) {array.push(withData(i))…

QT登陆注册界面练习

一、界面展示 二、主要功能界面代码 #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QMainWindow(parent), ui(new Ui::Widget) {ui->setupUi(this);this->setFixedSize(540,410); //设置固定尺寸th…

CentOS 8 安装 Code Igniter 4

在安装好LNMP运行环境基础上&#xff0c;将codeigniter4文件夹移动到/var/nginx/html根目录下&#xff0c;浏览器地址栏输入IP/codeigniter/pulbic 一直提示&#xff1a; Cache unable to write to "/var/nginx/html/codeigniter/writable/cache/". 找了好久&…

nowcoder NC236题 最大差值

目录 题目描述&#xff1a; 示例1 示例2 题干解析&#xff1a; 暴力求解&#xff1a; 代码展示&#xff1a; 优化&#xff1a; 代码展示&#xff1a; 题目跳转https://www.nowcoder.com/practice/a01abbdc52ba4d5f8777fb5dae91b204?tpId128&tqId33768&ru/exa…

SpringBoot Mybatis 多数据源 MySQL+Oracle

一、背景 在SpringBoot Mybatis 项目中&#xff0c;需要连接 多个数据源&#xff0c;连接多个数据库&#xff0c;需要连接一个MySQL数据库和一个Oracle数据库 二、依赖 pom.xml <dependencies><dependency><groupId>org.springframework.boot</groupId&…

Windows:解决MySQL登录ERROR 1045 (28000): Access denied for user ‘root‘@‘localhost‘ (using passwor=YES)问题

我在下载的MySQL是8.0.32版本&#xff0c;刚下的时候没什么问题第二天启动MySQL服务就出现了 ERROR 1045 (28000): Access denied for user rootlocalhost (using password: YES) 或 ERROR 1045 (28000): Access denied for user rootlocalhost (using password: NO) 这样的问题…

十六、pikachu之SSRF

文章目录 1、SSRF概述2、SSRF&#xff08;URL&#xff09;3、SSRF&#xff08;file_get_content&#xff09; 1、SSRF概述 SSRF(Server-Side Request Forgery&#xff1a;服务器端请求伪造)&#xff1a;其形成的原因大都是由于服务端提供了从其他服务器应用获取数据的功能&…

【ES6】Getter和Setter

JavaScript中的getter和setter方法可以用于访问和修改对象的属性。这些方法可以通过使用对象字面量或Object.defineProperty()方法来定义。 以下是使用getter和setter方法的示例&#xff1a; <!DOCTYPE html> <script>const cart {_wheels: 4,get wheels(){retu…

利用torchvision库实现目标检测与语义分割

一、介绍 利用torchvision库实现目标检测与语义分割。 二、代码 1、目标检测 from PIL import Image import matplotlib.pyplot as plt import torchvision.transforms as T import torchvision import numpy as np import cv2 import randomCOCO_INSTANCE_CATEGORY_NAMES …

【计算机组成原理】一文快速入门,很适合JAVA后端看

作者简介&#xff1a; CSDN内容合伙人、CSDN新星计划导师、JAVA领域优质创作者、阿里云专家博主&#xff0c;计算机科班出身、多年IT从业经验、精通计算机核心理论、Java SE、Java EE、数据库、中间件、分布式技术&#xff0c;参加过国产中间件的核心研发&#xff0c;对后端有…

怎么把pdf图片转换成jpg?pdf转jpg的方法分享

pdf文件在我们的日常工作中非常的常见&#xff0c;因为这种文件安全性高&#xff0c;不会轻易的乱码&#xff0c;所以受到了我们的欢迎&#xff0c;但是它不容易被编辑&#xff0c;而且占用内存会比较大&#xff0c;所以我们需要将pdf文件进行转换&#xff0c;接下来小编会为大…

【网络】多路转接——poll | epoll

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《网络》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 书接上文五种IO模型 | select。 poll | epoll &#x1f367;poll&#x1f9c1;认识接口&#x1f9c1;简…

WebAgent-基于大型语言模型的代理程序

大型语言模型&#xff08;LLM&#xff09;可以解决多种自然语言任务&#xff0c;例如算术、常识、逻辑推理、问答、文本生成、交互式决策任务。最近&#xff0c;LLM在自主网络导航方面也取得了巨大成功&#xff0c;代理程序助HTML理解和多步推理的能力&#xff0c;通过控制计算…

【Linux】centos8安装cmake3.27.4

第一步&#xff0c;去官网下安装包&#xff0c;一定不要下错了 下好了之后&#xff0c;用ftp软件传到云服务器或者虚拟机上&#xff0c;我用的是centos8系统&#xff0c;安装之前先准备好这些依赖项 yum install -y gcc gcc-c make automake yum install -y openssl openssl-…

git rebase和merge区别

一、概述 merge和rebase 标题上的两个命令&#xff1a;merge和rebase都是用来合并分支的。 这里不解释rebase命令&#xff0c;以及两个命令的原理&#xff0c;详细解释参考这里。 下面的内容主要说的是两者在实际操作中的区别。 1.1 什么是分支 分支就是便于多人在同一项目…