腾讯云服务器中Ubuntu18.04搭建python3.7.0与TensorFlow1.15.0与R-4.0.3环境

所有踩过的坑,都化成了这条平坦的路

云服务器配置

基础配置选择竞价实例(便宜/需求小)

选择地区(距离自己近的就行)

实例配置选择异构计算(能力较强,性价比高)根据GPU显存需求选择(一般学生都是16GB左右),但是这个是竞价实例,大家抢着买的,经常被收回,所以选个最贴近自己需求的就可。选择镜像,特别注意所需要的pyhton版本或TensorFlow版本是要求指定Ubuntu的,这里我想要搭建的是TensorFlow1.15.0,这个版本需要对应Ubuntu18.04的CUDA10.0还有cuDNN的7.4,如果没有注意这里的匹配,后续的程序可能会出现很多bug。存储选择可以按他推荐的来(我一般减一点,少点钱哈哈哈)确认被收回的风险,后续的步骤按提示默认即可

Ubuntu18.04默认的是pyhton2.7,所以要先搭建Python3.7.0环境。我选择从源码编译3.7.0(最稳最慢)

首先确保安装依赖项(别管你需不需要了,装就完事,到时候要又没有都不知道从哪儿装)

sudo apt update  
sudo apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libreadline-dev libffi-dev libsqlite3-dev wget libbz2-dev

使用wget下载pyhton3.7.0源码包

wget https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz

解压安装

# 解压源码包  
tar -xzf Python-3.7.0.tgz  
  
# 进入解压后的目录  
cd Python-3.7.0  
  
# 配置安装参数(这里指定安装到/usr/local/python3.7)  
sudo ./configure --prefix=/usr/local/python3.7  
  
# 编译  
sudo make  
  
# 安装  
sudo make install

由于是源代码安装,需要安装pip3

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py  
curl https://bootstrap.pypa.io/pip/3.7/get-pip.py -o get-pip.py #指定3.7
python3.7 get-pip.py
/usr/local/python3.7/bin/python3.7 get-pip.py #指定路径

上述具体路径如图所示使用-m避免与其他版本的pip冲撞

/usr/local/python3.7/bin/python3.7 -m pip --version

安装TensorFlow1.15.0(加镜像加速)

/usr/local/python3.7/bin/python3.7 -m pip install tensorflow==1.15.0 -i http://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com

验证TensorFlow1.15.0是否安装在了python3.7.0版本中

python3.7
import tensorflow as tf  
print(tf.__version__)

未完

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/968317.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

金融风控项目-1

文章目录 一. 案例背景介绍二. 代码实现1. 加载数据2. 数据处理3. 查询 三. 业务解读 一. 案例背景介绍 通过对业务数据分析了解信贷业务状况 数据集说明 从开源数据改造而来,基本反映真实业务数据销售,客服可以忽略账单周期,放款日期账单金…

JAVA安全—Shiro反序列化DNS利用链CC利用链AES动态调试

前言 讲了FastJson反序列化的原理和利用链,今天讲一下Shiro的反序列化利用,这个也是目前比较热门的。 原生态反序列化 我们先来复习一下原生态的反序列化,之前也是讲过的,打开我们写过的serialization_demo。代码也很简单&…

基于Spring Boot的医院挂号就诊系统【免费送】

基于Spring Boot的医院挂号就诊系统 效果如下: 系统登陆页面 系统主页面 挂号页面 客服页面 挂号管理页面 公告信息管理页面 审核页面 在线咨询管理页面 研究背景 随着医疗技术的不断发展和人们健康意识的提高,医院作为提供医疗服务的核心机构&#x…

玩转适配器模式

文章目录 解决方案现实的举例适用场景实现方式适配器模式优缺点优点:缺点:适配器模式可比上一篇的工厂模式好理解多了,工厂模式要具有抽象的思维。这个适配器模式,正如字面意思,就是要去适配某一件物品。 假如你正在开发一款股票市场监测程序, 它会从不同来源下载 XML 格…

栈的简单介绍

一.栈 栈是一种先进后出的结构:(先出来的是45,要出12就必须先把前面的数据全部出完。) 2.实例化一个栈对象: 3.入栈: 4.出栈:(当走完pop就直接弹出45了。) 5.出栈的…

【Java】-【面试】-【Java进阶】

一、分布式 1、分布式锁 2、分布式ID 3、分布式事务

Leetcode - 周赛435

目录 一、3442. 奇偶频次间的最大差值 I二、3443. K 次修改后的最大曼哈顿距离三、3444. 使数组包含目标值倍数的最少增量四、3445. 奇偶频次间的最大差值 II 一、3442. 奇偶频次间的最大差值 I 题目链接 本题使用数组统计字符串 s s s 中每个字符的出现次数,然后…

kafka了解-笔记

文章目录 kafka快速上手Kafka介绍Kafka快速上手理解Kafka的集群工作机制Kafka集群的消息流转模型 Kafka客户端小型流转流程客户端工作机制 kafka快速上手 Kafka介绍 MQ的作用 MQ:MessageQueue,消息队列,是一种FIFO先进先出的数据结构&#…

支持向量机原理

支持向量机(简称SVM)虽然诞生只有短短的二十多年,但是自一诞生便由于它良好的分类性能席卷了机器学习领域。如果不考虑集成学习的算法,不考虑特定的训练数据集,尤其在分类任务中表现突出。在分类算法中的表现SVM说是排…

解决VsCode的 Vetur 插件has no default export Vetur问题

文章目录 前言1.问题2. 原因3. 解决其他 前言 提示: 1.问题 Cannot find module ‘ant-design-vue’. Did you mean to set the ‘moduleResolution’ option to ‘node’, or to add aliases to the ‘paths’ option? Module ‘“/xxx/xxx/xxx/xxx/xxx/src/vie…

常用的python库-安装与使用

常用的python库函数 yield关键字openslide库openslide库的安装-linuxopenslide的使用openslide对象的常用属性 cv2库numpy库ASAP库-multiresolutionimageinterface库ASAP库的安装ASAP库的使用 concurrent.futures.ThreadPoolExecutorxml.etree.ElementTree库skimage库PIL.Image…

Word成功接入DeepSeek详细步骤

原理 原理是利用Word的VBA宏,写代码接入API。无需下载额外插件。 步骤一、注册硅基流动 硅基流动统一登录 注册这个是为了有一个api调用的api_key,有一些免费的额度可以使用。大概就是这个公司提供token,我们使用这个公司的模型调用deepsee…

【Ubuntu VScode Remote SSH 问题解决】Resolver error: Error: XHR failed

1. 问题描述 VScode使用remote ssh 远程服务器,报错类似: [12:06:01.219] Downloading VS Code server locally... [12:06:01.310] Resolver error: Error: XHR failedat k.onerror (vscode-file://vscode-app/private/var/folders/g1/cvs2rnpx60qc3b4…

系统思考—双环学习

前几天,一个企业高管向我提到:“我们调整了N次方案,市场策略、团队激励、管理制度,能改的全改了,怎么还是不见起色?” 这让我想到典型的单环学习,简单来说就是:发现问题 → 采取行动…

2.11寒假

今天复习了深搜和广搜然后做了作业中的一个题目。 解析&#xff1a;外层 for 循环&#xff1a;for (int i 1; i < n; i)&#xff0c;循环变量 i 从 1 递增到 n&#xff0c;表示要依次将数字 1 到 n 分配到数组 a 中。内层 for 循环&#xff1a;for (int j 1; j < 2; j)…

使用 AlexNet 实现图片分类 | PyTorch 深度学习实战

前一篇文章&#xff0c;CNN 卷积神经网络处理图片任务 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 本篇文章内容来自于 强化学习必修课&#xff1a;引领人工智能新时代【梗直哥瞿炜】 使用 AlexNet 实现图片分类…

基于进化式大语言模型的下一代漏洞挖掘范式:智能对抗与自适应攻防体系

摘要 本文提出了一种基于进化式大语言模型(Evolutionary LLM)的智能漏洞挖掘框架,突破了传统静态分析的局限,构建了具备对抗性思维的动态攻防体系。通过引入深度强化学习与多模态感知机制,实现了漏洞挖掘过程的自适应进化,在RCE、SQLi、XXE等关键漏洞类型的检测中达到97…

python自动化测试之Pytest框架之YAML详解以及Parametrize数据驱动!

一、YAML详解 YAML是一种数据类型&#xff0c;它能够和JSON数据相互转化&#xff0c;它本身也是有很多数据类型可以满足我们接口 的参数类型&#xff0c;扩展名可以是.yml或.yaml 作用&#xff1a; 1.全局配置文件 基础路径&#xff0c;数据库信息&#xff0c;账号信息&…

SQLMesh系列教程-2:SQLMesh入门项目实战(上篇)

假设你已经了解SQLMesh是什么&#xff0c;以及其他应用场景。如果没有&#xff0c;我建议你先阅读《SQLMesh系列教程-1&#xff1a;数据工程师的高效利器-SQLMesh》。 在本文中&#xff0c;我们将完成一个小项目或教程&#xff0c;以帮助你开始使用SQLMesh。你可以选择一步一步…

人工智能与低代码如何重新定义企业数字化转型?

引言&#xff1a;数字化转型的挑战与机遇 在全球化和信息化的浪潮中&#xff0c;数字化转型已经成为企业保持竞争力和创新能力的必经之路。然而&#xff0c;尽管“数字化”听上去是一个充满未来感的词汇&#xff0c;落地的过程却往往充满困难。 首先&#xff0c;传统开发方式…