从基础到人脸识别与目标检测

前言

从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。我采用的笔记本是联想拯救者游戏本,系统采用Ubuntu20.04,ROS采用noetic。

颜色编码格式,图像格式和视频压缩格式

(1)RGB和BGR:这是两种常见的颜色编码格式,分别代表了红、绿、蓝三原色。不同之处在于,RGB按照红、绿、蓝的顺序存储颜色信息,而BGR按照蓝、绿、红的顺序存储。

rgb8图像格式:常用于显示系统,如电视和计算机屏幕。
	RGB值以8 bits表示每种颜色,总共可以表示256×256×256=16777216种颜色。
	例如: (255,0,0) 表示红色,(0,255,0) 表示绿色,(0,0,255) 表示蓝色。
bgr8图像格式:由一些特定的硬件制造商采用,
	软件方面最著名的就是opencv,其默认使用BGR的颜色格式来处理图像。
	与RGB不同, (0,0,255) 在BGR中表示红色,(0,255,0) 仍然表示绿色,(255,0,0) 表示蓝色。

在自动驾驶里,使用rgb8图像格式的图像,一般称为原图,是数据量最大的格式,没有任何压缩。(2)(2)YUV:这是另一种颜色编码方法,与RGB模型不同的是,它将图像信息分解为亮度(Y)和色度(U和V)两部分。这种方式更接近于人类对颜色的感知方式。

Y:代表亮度信息,也就是灰阶值。
U:从色度信号中减去Y得到的蓝色信号的差异值。
V:从色度信号中减去Y得到的红色信号的差异值。

YUV颜色编码主要用在电视系统以及视频编解码标准中,在这些系统中,Y通道信息可以单独使用,这样黑白电视机也能接收和显示信号。而彩色信息则通过U和V两个通道传输,只有彩色电视机才能处理。这样设计兼容了黑白电视和彩色电视。YUV色彩空间相比RGB色彩空间,更加符合人眼对亮度和色彩的敏感度,在视频压缩时,可以按照人眼的敏感度对YUV数据进行压缩,以达到更高的压缩比。由于历史和技术的原因,YUV的标准存在多种,例如YUV 4:4:4、YUV 4:2:2和YUV 4:2:0等,这些主要是针对U和V通道的采样方式不同定义的。采样不同,对应的压缩比也不同。

(3)图像压缩格式

jpeg:Joint Photographic Experts Group,是一种常见的用于静态图像的损失性压缩格式,
	它特别适合于全彩色和灰度图片,被广泛使用。
	通常情况下,JPEG可以提供10:1到20:1的有损压缩比,根据图像质量自由调整。
png: Portable Network Graphics,PNG是一种无损压缩格式,主要使用了DEFLATE算法。
	由于这是无损压缩,所以解压缩图像可以完全恢复原始数据。
	被广泛应用于需要高质量图像的场景,如网页设计、艺术作品等。
bmp:Bitmap,BMP是Windows系统中常用的一种无压缩的位图图像格式,通常会创造出较大的文件。

位图(Bitmap)是一种常见的计算机图形,最小单位是像素,每个像素都包含一定量的信息,如颜色和亮度等。位图图像的一个主要特点就是,在放大查看时,可以看到图像的像素化现象,也就是我们常说的"马赛克"。BMP、JPEG、GIF、PNG等都是常见的位图格式。

(4)H264和H265:这是两个视频压缩格式,也是两种视频编解码标准。以1280*720的摄像头为例,如果是rgb8格式的原图,一帧图像的大小是:

3*1280*720=27648000字节,即2.7648MB

如果是一小时的视频,那将是非常大的数据量,对网络传输,数据存储,都是很大的压力。而H264通过种种帧间操作,可以达到10:1到50:1的压缩比,甚至更高。H265更进一步,压缩比更高,用来解决4K或8K视频的传输。

更具体的原理见:图像编码与 H264 基础知识在自动驾驶领域,图像数据也使用h264格式,主要用于数采和回放,控制数据量。

usb_cam

(1)linux针对摄像头硬件有一套Video for Linux内核驱动框架,对应提供的有命令行工具 v4l2-ctl (Video for Linux 2),可以查看摄像头硬件信息:

ls /dev/video0  //一般video0是笔记本自带摄像头设备文件
v4l2-ctl -d /dev/video0 --all

这里截取了部分关键信息,下面的usb_cam的launch文件将用到:

(2)usb_cam是ros里usb camera的软件包,一般称为ros摄像头驱动,但这是一个应用程序,其调用v4l2并通过ros topic发出图像数据。搞机器视觉,第一步就是要有图。安装并启动usb_cam,查看图像:

sudo apt-get install ros-noetic-usb-cam 
roslaunch usb_cam usb_cam-test.launch
rqt_image_view

usb_cam-test.launch:

<launch>
  <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
    //指定设备文件名,默认是/dev/video0
    <param name="video_device" value="/dev/video0" />
    // 宽和高分辨率	
    <param name="image_width" value="640" />
    <param name="image_height" value="480" />
    // 像素编码,可选值:mjpeg,yuyv,uyvy
    <param name="pixel_format" value="yuyv" />
    <param name="color_format" value="yuv422p" />
    // camera坐标系名
    <param name="camera_frame_id" value="usb_cam" />
    // IO通道,可选值:mmap,read,userptr,大数据量信息一般用mmap
    <param name="io_method" value="mmap"/>
  </node>
  <node name="image_view" pkg="image_view" type="image_view" respawn="false" output="screen">
  	// 指定发出的topic名:/usb_cam/image_raw
    <remap from="image" to="/usb_cam/image_raw"/>
    <param name="autosize" value="true" />
  </node>
</launch>

(3)/usb_cam/image_raw的数据结构体:

rostopic info /usb_cam/image_raw
rosmsg show  sensor_msgs/Image

//消息头,每个topic都有
std_msgs/Header header	
  uint32 seq
  time stamp
  // 坐标系名
  string frame_id
// 高和宽分辨率
uint32 height
uint32 width
// 无压缩的图像编码格式,包括rgb8,YUV444
string encoding
// 图像数据的大小端存储模式
uint8 is_bigendian
// 一行图像数据的字节数量,作为步长参数
uint32 step
// 存储图像数据的柔性数组,大小是step*height
uint8[] data

/usb_cam/image_raw内容展示:

(4)/usb_cam/image_raw/compressed的数据结构体:

rostopic info /usb_cam/image_raw/compressed
rosmsg show sensor_msgs/CompressedImage

std_msgs/Header header
  uint32 seq
  time stamp
  string frame_id
// 压缩的图像编码格式,jpeg,png
string format
uint8[] data

/usb_cam/image_raw/compressed内容展示:

摄像头标定

标定引入

(1)Calibration:翻译过来就是校准和标定。(2)摄像头标定:Camera Calibration是计算机视觉中的一种关键技术,其目的是确定摄像头的内部参数(Intrinsic Parameters)和外部参数(Extrinsic Parameters)。

内部参数:包括焦距、主点坐标以及镜头畸变等因素。
	这些参数与相机本身的硬件有关,如镜头和图像传感器等,一般由厂家提供。
外部参数:摄像头相对于环境的位置和方向。
	例如,它可能描述了一个固定摄像头相对于周围环境的姿态或者安装位置。
	以汽车为例,外参包括各个摄像头之间的关系,摄像头与radar,摄像头与lidar的关系。

(3)汽车各种传感器的之间的相对位置和朝向,用3自由度的旋转矩阵和3自由度的平移向量表示,这些外参由整车厂自己标。一般整车下线之后,进入特定的房间,使用静态标靶、定位器的等高精度设备,完成Camera、radar、Lidar等传感器的标定,称之为产线标定,也叫做下线标定。

笔记本摄像头内参标定

这里我们使用标定常用的标靶图形,完成笔记本摄像头的内参标定。usb_cam可以使用内参标定,避免图像畸变。(1)安装标定功能包(ubuntu20.04+noetic)

sudo apt-get install ros-noetic-camera-calibration

(2)创建 robot_vision 软件包,并标定相关文件

cd ~/catkin_ws/src
catkin_create_pkg robot_vision cv_bridge image_transport sensor_msgs std_msgs geometry_msgs message_generation roscpp rospy

cd robot_vision 
mkdir doc launch
touch launch/cameta_calibration.launch

标定靶图片:

cameta_calibration.launch:

<launch>
  // 使用usb_cam包,发出/usb_cam/image_raw图像数据
  <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
    <param name="video_device" value="/dev/video0" />
    <param name="image_width" value="640" />
    <param name="image_height" value="480" />
    <param name="pixel_format" value="yuyv" />
    <param name="camera_frame_id" value="usb_cam" />
    <param name="io_method" value="mmap"/>
  </node>
  // 使用标定功能包,完成标定。
  // 参数中,8x6表示横向8个内部角点,竖向有6个
  // square 是每个棋盘格的边长
  // /usb_cam/image_raw是监听的图像topic
  <node
      pkg="camera_calibration"
      type="cameracalibrator.py"
      name="camera_calibration"
      output="screen"
      args="--size 8x6 --square 0.024 image:=/usb_cam/image_raw camera:=/usb_cam"
  />
</launch>

(3)编译并运行

cd ~/catkin_ws/
catkin_make --source src/robot_vision 
source devel/setup.bash
roslaunch robot_vision cameta_calibration.launch

不断晃动,直到COMMIT按键亮起,然后点击,即可生成标定文件,本人的路径为:/home/mm/.ros/camera_info/head_camera.yaml。

opencv和cv_bridge引入

(1)opencv和cv_bridge

安装opencv(ubuntu20.04+noetic):

sudo apt-get install ros-noetic-vision-opencv libopencv-dev python3-opencv

(2)opencv和cv_bridge的简单架构图如下:

根据这个图,在ros里,处理图像的流程一般是:

    # 第一步:使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
	cv_image = cv_bridge.imgmsg_to_cv2(msg, "bgr8")

	# 第二步:使用opencv进行图像处理
	。。。
	
	# 第三步,再将opencv格式额数据转换成ros image格式的数据
	ros_image = cv_bridge.cv2_to_imgmsg(cv_image, "bgr8")

(3)在 上节的robot_vision包里,我们新增一个cv_bridge的小样例,主要功能是在捕捉到的图像上打个蓝色的圆标。

本文不深入讲解opencv,推荐一个资料:W3Cschool - OpenCV教程

cv_bridge_test.py:

#! /usr/bin/env python3
# -*- coding: utf-8 -*-
import rospy
import cv2
from functools import partial
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image

def image_cb(msg, cv_bridge, image_pub):
    # 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
    try:
        cv_image = cv_bridge.imgmsg_to_cv2(msg, "bgr8")
    except CvBridgeError as e:
        print(e)

    # 在opencv的显示窗口中绘制一个圆,作为标记
    # cv_image.shape返回一个元组,包含图像的行数(高度),列数(宽度)和通道数(通常是3个通道:BGR)
    (rows, cols, channels) = cv_image.shape
    # 当图像的宽度和高度都大于60时,才执行画圆标动作
    if cols > 60 and rows > 60:
    	# 在计算机图像处理中,图像的原点(0,0)通常定义为图像的左上角。(60,60)是圆心的坐标。
    	# 30是圆的半径。
    	# (255,0,0)定义了圆的颜色。在OpenCV中,默认的颜色空间是BGR,所以这其实是绘制了一个蓝色的圆。
    	# -1表示填充圆。如果这个值是正数,则代表绘制的圆的线宽;如果是负数,则代表填充该圆。
        cv2.circle(cv_image, (60,60), 30, (255,0,0), -1)

    # 使用Opencv的接口,显示Opencv格式的图像
    cv2.imshow("ycao: opencv image window", cv_image)
    cv2.waitKey(3)

    # 再将opencv格式额数据转换成ros image格式的数据发布
    try:
        image_pub.publish(cv_bridge.cv2_to_imgmsg(cv_image, "bgr8"))
    except CvBridgeError as e:
        print(e)

def main():
    rospy.init_node("cv_bridge_test")
    rospy.loginfo("starting cv_bridge_test node")

    bridge = CvBridge()
    image_pub = rospy.Publisher("/cv_bridge_image", Image, queue_size=1)
    bind_image_cb = partial(image_cb, cv_bridge=bridge, image_pub=image_pub)
	// 订阅/usb_cam/image_raw,然后再回调函数里处理图像,并发布出来
    rospy.Subscriber("/usb_cam/image_raw", Image, bind_image_cb)
    rospy.spin()
    cv2.destroyAllWindows()
if __name__ == "__main__":
    main()

cv_bridge_test.launch

<launch>
  <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
    <param name="video_device" value="/dev/video0" />
    <param name="image_width" value="640" />
    <param name="image_height" value="480" />
    <param name="pixel_format" value="yuyv" />
    <param name="camera_frame_id" value="usb_cam" />
    <param name="io_method" value="mmap"/>
  </node>
  <node
      pkg="robot_vision"
      type="cv_bridge_test.py"
      name="cv_bridge_test"
      output="screen"
  />
  <node
      pkg="rqt_image_view"
      type="rqt_image_view"
      name="rqt_image_view"
      output="screen"
  />
</launch>

(4)编译并运行

cd ~/catkin_ws/
catkin_make --source src/robot_vision 
source devel/setup.bash
roslaunch robot_vision cv_bridge_test.launch

总结

本文主要系统介绍了机器视觉处理的外围知识,引入了opencv和cv_bridge,后面几篇文章,我们将用它们继续丰富 robot_vision 软件包。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/967751.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

未来替代手机的产品,而非手机的本身

替代手机的产品包括以下几种&#xff1a; 可穿戴设备&#xff1a;智能手表、智能眼镜等可穿戴设备可以提供类似手机的功能&#xff0c;如通话、信息推送、浏览网页等。 虚拟现实&#xff08;VR&#xff09;技术&#xff1a;通过佩戴VR头显&#xff0c;用户可以进行语音通话、发…

QTreeView和QTableView单元格添加超链接

QTreeView和QTableView单元格添加超链接的方法类似,本文仅以QTreeView为例。 在QTableView仿Excel表头排序和筛选中已经实现了超链接的添加,但是需要借助delegate,这里介绍一种更简单的方式,无需借助delegate。 一.效果 二.实现 QHTreeView.h #ifndef QHTREEVIEW_H #def…

正则引入store中的modules文件

正则引入store中的modules文件 // index.js import { createStore } from vuex;const modulesFiles require.context(./modules, true, /\.ts|js$/); const modules modulesFiles.keys().reduce((modules1, modulePath) > {const moduleName modulePath.replace(/^\.\/(.…

如何保证Redis和MySQL数据的一致性刨析

1、常见的缓存更新策略&#xff1a; 定义&#xff1a;主要用来进行redis和mysql的数据同步更新的一些策略 内存淘汰&#xff1a;等触发淘汰机制后&#xff0c;刚好淘汰到了用户查询的数据&#xff0c;此时是null&#xff0c;会进行查询数据库并写入到缓存中&#xff0c;此时…

产品详情页中 品牌官网详情 对应后端的字段是 detail

文章目录 1、在这个Vue代码中&#xff0c;品牌官网详情 对应后端的字段是 detail2、品牌官网详情 功能相关的代码片段3、export const productSave (data: any) >4、ProductController5、ProductDto 类6、ProductApiService 1、在这个Vue代码中&#xff0c;品牌官网详情 对…

使用C语言实现MySQL数据库的增删改查操作指南

使用C语言与MySQL数据库进行交互,通常涉及使用MySQL提供的C API库。这套API允许开发者在C/C++程序中执行SQL查询,从而实现数据库的增删改查操作。下面,我将详细介绍如何在C语言中实现这些基本操作。 准备工作 安装MySQL开发库:确保你的系统上安装了MySQL服务器以及MySQL开发…

【蓝桥杯嵌入式】2_LED

全部代码网盘自取 链接&#xff1a;https://pan.baidu.com/s/1PX2NCQxnADxYBQx5CsOgPA?pwd3ii2 提取码&#xff1a;3ii2 1、电路图 74HC573是八位锁存器&#xff0c;当控制端LE脚为高电平时&#xff0c;芯片“导通”&#xff0c;LE为低电平时芯片“截止”即将输出状态“锁存”…

计算机视觉常用数据集Cityscapes的介绍、下载、转为YOLO格式进行训练

我在寻找Cityscapes数据集的时候花了一番功夫&#xff0c;因为官网下载需要用公司或学校邮箱邮箱注册账号&#xff0c;等待审核通过后才能进行下载数据集。并且一开始我也并不了解Cityscapes的格式和内容是什么样的&#xff0c;现在我弄明白后写下这篇文章&#xff0c;用于记录…

MariaDB MaxScale实现mysql8主从同步读写分离

一、MaxScale基本介绍 MaxScale是maridb开发的一个mysql数据中间件&#xff0c;其配置简单&#xff0c;能够实现读写分离&#xff0c;并且可以根据主从状态实现写库的自动切换&#xff0c;对多个从服务器能实现负载均衡。 二、MaxScale实验环境 中间件192.168.121.51MaxScale…

Python设计模式 - 原型模式

定义 原型模式是一种创建型设计模式&#xff0c;它可以通过复制现有对象来创建新对象&#xff0c;而不是直接实例化新的对象。 结构 抽象原型&#xff08;Prototype&#xff09;&#xff1a;声明 clone() 方法&#xff0c;以便派生类实现克隆自身的能力。具体原型&#xff08…

GWO优化决策树回归预测matlab

灰狼优化算法&#xff08;Grey Wolf Optimizer&#xff0c;简称 GWO&#xff09;是一种群智能优化算法&#xff0c;由澳大利亚格里菲斯大学的 Mirjalii 等人于 2014 年提出。该算法的设计灵感源自灰狼群体的捕食行为&#xff0c;核心思想是模仿灰狼社会的结构与行为模式。 在本…

Oracle的学习心得和知识总结(三十三)|Oracle数据库数据库的SQL ID的底层计算原理分析

目录结构 注&#xff1a;提前言明 本文借鉴了以下博主、书籍或网站的内容&#xff0c;其列表如下&#xff1a; 1、参考书籍&#xff1a;《Oracle Database SQL Language Reference》 2、参考书籍&#xff1a;《PostgreSQL中文手册》 3、EDB Postgres Advanced Server User Gui…

Git(分布式版本控制系统)系统学习笔记【并利用腾讯云的CODING和Windows上的Git工具来实操】

Git的概要介绍 1️⃣ Git 是什么&#xff1f; Git 是一个 分布式版本控制系统&#xff08;DVCS&#xff09;&#xff0c;用于跟踪代码的变更、协作开发和管理项目历史。 由 Linus Torvalds&#xff08;Linux 之父&#xff09;在 2005 年开发&#xff0c;主要用于 代码管理。…

yum报错 Could not resolve host: mirrorlist.centos.org

检查dns 使用ping www.baidu.com &#xff0c;如果ping不通&#xff0c;检查/etc/resolv.conf文件中是否有&#xff1a; nameserver 8.8.8.8 nameserver 8.8.4.4 替换yum源 1.备份原始的 YUM 源配置文件&#xff1a; sudo cp /etc/yum.repos.d/CentOS-Base.repo /etc/yum.r…

postgreSQL16.6源码安装

1.获取源码 从PostgreSQL: File Browser获取tar.bz2或者tar.gz源码 2.解压 tar xf postgresql-version.tar.bz2 roothwz-VMware-Virtual-Platform:/usr/local# tar xf postgresql-16.6.tar.bz2 roothwz-VMware-Virtual-Platform:/usr/local# ll 总计 24324 drwxr-xr-x 12 ro…

Machine Learning:Introduction

文章目录 Machine LearningTrainingStep 1.Contract Function with Unknown ParametersStep 2.Define Loss from Training DataStep 3.Optimization Linear ModelPiecewise Linear CurveBeyond Piecewise Liner?FunctionLossOptimization Model Deformation Machine Learning …

【Java】多线程和高并发编程(三):锁(下)深入ReentrantReadWriteLock

文章目录 4、深入ReentrantReadWriteLock4.1 为什么要出现读写锁4.2 读写锁的实现原理4.3 写锁分析4.3.1 写锁加锁流程概述4.3.2 写锁加锁源码分析4.3.3 写锁释放锁流程概述&释放锁源码 4.4 读锁分析4.4.1 读锁加锁流程概述4.4.1.1 基础读锁流程4.4.1.2 读锁重入流程4.4.1.…

使用redis实现 令牌桶算法 漏桶算法

流量控制算法&#xff0c;用于限制请求的速率。 可以应对缓存雪崩 令牌桶算法 核心思想是&#xff1a; 有一个固定容量的桶&#xff0c;里面存放着令牌&#xff08;token&#xff09;。每过一定时间&#xff08;如 1 秒&#xff09;&#xff0c;桶中会自动增加一定数量的令牌…

金媒婚恋交友系统V10.5的CRM操作提示:“您没有权限执行此操作”解决方法

大家都知道新年2.5日新版10.5已经升级了&#xff0c;这次升级相对以前更新内容相当重量级&#xff01;最突出的就是CRM系统的更新和UI改观吐槽的内容都改进了我愿意和大家分享代码和新得~关注我昵称就能知道我哦&#xff01;&#xff01; 出现原因&#xff1a;是这个红娘账号没…

ubuntu使用最佳流程2:ubuntu20.04安装cuda(多版本切换),cudnn,显卡驱动

cuda安装&#xff08;多版本cuda安装&#xff1a;可切换&#xff09; 查看系统硬件配置 查询Linux系统的版本号 lsb_release -a查询显卡型号 待更新下载 CUDA官方传送门 找到适合自己的命令行下载安装即可 安装 accept 第一个driver去掉&#xff08;点击enter&#xff…