llama.cpp GGUF 模型格式

llama.cpp GGUF 模型格式

  • 1. Specification
    • 1.1. GGUF Naming Convention (命名规则)
      • 1.1.1. Validating Above Naming Convention
    • 1.2. File Structure
  • 2. Standardized key-value pairs
    • 2.1. General
      • 2.1.1. Required
      • 2.1.2. General metadata
      • 2.1.3. Source metadata
    • 2.2. LLM
      • 2.2.1. Attention
      • 2.2.2. RoPE
        • 2.2.2.1. Scaling
      • 2.2.3. SSM
      • 2.2.4. Models
        • 2.2.4.1. LLaMA
          • 2.2.4.1.1. Optional
        • 2.2.4.2. MPT
        • 2.2.4.3. GPT-NeoX
          • 2.2.4.3.1. Optional
        • 2.2.4.4. GPT-J
          • 2.2.4.4.1. Optional
        • 2.2.4.5. GPT-2
        • 2.2.4.6. BLOOM
        • 2.2.4.7. Falcon
          • 2.2.4.7.1. Optional
        • 2.2.4.8. Mamba
        • 2.2.4.9. RWKV
        • 2.2.4.10. Whisper
      • 2.2.5. Prompting
    • 2.3. LoRA
    • 2.4. Tokenizer
      • 2.4.1. GGML
        • 2.4.1.1. Special tokens
      • 2.4.2. Hugging Face
      • 2.4.3. Other
    • 2.5. Computation graph
  • 3. Standardized tensor names
    • 3.1. Base layers
    • 3.2. Attention and feed-forward layer blocks
  • 4. Version History
    • 4.1. v3
    • 4.2. v2
    • 4.3. v1
  • 5. Historical State of Affairs (历史状况)
    • 5.1. Overview
    • 5.2. Drawbacks
    • 5.3. Why not other formats?
  • References

原来仙翁手下,竟是两只禽兽!什么仙什么妖,全是唬弄人的把戏!

ggml/docs/gguf.md
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md

GGUF is a file format for storing models for inference with GGML and executors based on GGML. GGUF is a binary format that is designed for fast loading and saving of models, and for ease of reading. Models are traditionally developed using PyTorch or another framework, and then converted to GGUF for use in GGML.
GGUF 是一种用于存储模型的文件格式。

It is a successor file format to GGML, GGMF and GGJT, and is designed to be unambiguous by containing all the information needed to load a model. It is also designed to be extensible, so that new information can be added to models without breaking compatibility.
它是 GGML、GGMF 和 GGJT 的后继文件格式,旨在通过包含加载模型所需的所有信息来确保明确性。它还具有可扩展性,因此可以在不破坏兼容性的情况下将新信息添加到模型中。

For more information about the motivation behind GGUF, see Historical State of Affairs.

1. Specification

GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use.
GGUF 是一种基于现有 GGJT 的格式,但对格式进行了一些更改,使其更具可扩展性和更易于使用。

The following features are desired:

  • Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information.
    它们可以轻松分发和加载,并且不需要任何外部文件来获取附加信息。
  • Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models.
    可以向基于 GGML 的执行器添加新功能/可以将新信息添加到 GGUF 模型,而不会破坏与现有模型的兼容性。
  • mmap compatibility: models can be loaded using mmap for fast loading and saving.
    可以使用 mmap 加载模型,以便快速加载和保存。
  • Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used.
    无论使用何种语言,只需少量代码即可轻松加载和保存模型,无需外部库。
  • Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user.
    加载模型所需的所有信息都包含在模型文件中,无需用户提供任何额外信息。

The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model.
GGJT 和 GGUF 之间的主要区别在于,GGUF 使用键值结构来表示超参数 (现在称为元数据),而不是无类型值列表。这样就可以在不破坏与现有模型兼容性的情况下添加新的元数据,并使用可能对推理或识别模型有用的其他信息来注释模型。

1.1. GGUF Naming Convention (命名规则)

GGUF follow a naming convention of <BaseName><SizeLabel><FineTune><Version><Encoding><Type><Shard>.gguf where each component is delimitated by a - if present. Ultimately this is intended to make it easier for humans to at a glance get the most important details of a model. It is not intended to be perfectly parsable in the field due to the diversity of existing gguf filenames.
最终,这样做的目的是让人们一眼就能了解模型最重要的细节。

The components are:

  1. BaseName: A descriptive name for the model base type or architecture.
    • This can be derived from gguf metadata general.basename substituting spaces for dashes.
  2. SizeLabel: Parameter weight class (useful for leader boards) represented as <expertCount>x<count><scale-prefix>
    • This can be derived from gguf metadata general.size_label if available or calculated if missing.
    • Rounded decimal point is supported in count with a single letter scale prefix to assist in floating point exponent shown below
      • Q: Quadrillion parameters.
      • T: Trillion parameters.
      • B: Billion parameters.
      • M: Million parameters.
      • K: Thousand parameters.
    • Additional -<attributes><count><scale-prefix> can be appended as needed to indicate other attributes of interest
  3. FineTune: A descriptive name for the model fine tuning goal (e.g. Chat, Instruct, etc…)
    • This can be derived from gguf metadata general.finetune substituting spaces for dashes.
  4. Version: (Optional) Denotes the model version number, formatted as v<Major>.<Minor>
    • If model is missing a version number then assume v1.0 (First Public Release)
    • This can be derived from gguf metadata general.version
  5. Encoding: Indicates the weights encoding scheme that was applied to the model. Content, type mixture and arrangement however are determined by user code and can vary depending on project needs.
  6. Type: Indicates the kind of gguf file and the intended purpose for it
  • If missing, then file is by default a typical gguf tensor model file
  • LoRA : GGUF file is a LoRA adapter
  • vocab : GGUF file with only vocab data and metadata
  1. Shard: (Optional) Indicates and denotes that the model has been split into multiple shards, formatted as <ShardNum>-of-<ShardTotal>.
    • ShardNum : Shard position in this model. Must be 5 digits padded by zeros. (必须是 5 位数字,并用零填充。)
      • Shard number always starts from 00001 onwards (e.g. First shard always starts at 00001-of-XXXXX rather than 00000-of-XXXXX). 分片编号始终从 00001 开始。
    • ShardTotal : Total number of shards in this model. Must be 5 digits padded by zeros. (必须是 5 位数字,并用零填充。)

1.1.1. Validating Above Naming Convention

At a minimum all model files should have at least BaseName, SizeLabel, Version, in order to be easily validated as a file that is keeping with the GGUF Naming Convention. An example of this issue is that it is easy for Encoding to be mistaken as a FineTune if Version is omitted.
所有模型文件至少应具有 BaseName, SizeLabel and Version,以便轻松验证是否符合 GGUF 命名约定。

To validate you can use this regular expression ^(?<BaseName>[A-Za-z0-9\s]*(?:(?:-(?:(?:[A-Za-z\s][A-Za-z0-9\s]*)|(?:[0-9\s]*)))*))-(?:(?<SizeLabel>(?:\d+x)?(?:\d+\.)?\d+[A-Za-z](?:-[A-Za-z]+(\d+\.)?\d+[A-Za-z]+)?)(?:-(?<FineTune>[A-Za-z0-9\s-]+))?)?-(?:(?<Version>v\d+(?:\.\d+)*))(?:-(?<Encoding>(?!LoRA|vocab)[\w_]+))?(?:-(?<Type>LoRA|vocab))?(?:-(?<Shard>\d{5}-of-\d{5}))?\.gguf$ which will check that you got the minimum BaseName, SizeLabel and Version present in the correct order.

For example:

  • Mixtral-8x7B-v0.1-KQ2.gguf:

    • Model Name: Mixtral
    • Expert Count: 8
    • Parameter Count: 7B
    • Version Number: v0.1
    • Weight Encoding Scheme: KQ2
  • Hermes-2-Pro-Llama-3-8B-F16.gguf:

    • Model Name: Hermes 2 Pro Llama 3
    • Expert Count: 0
    • Parameter Count: 8B
    • Version Number: v1.0
    • Weight Encoding Scheme: F16
    • Shard: N/A
  • Grok-100B-v1.0-Q4_0-00003-of-00009.gguf

    • Model Name: Grok
    • Expert Count: 0
    • Parameter Count: 100B
    • Version Number: v1.0
    • Weight Encoding Scheme: Q4_0
    • Shard: 3 out of 9 total shards
Example `Node.js` Regex Function
#!/usr/bin/env node
const ggufRegex = /^(?<BaseName>[A-Za-z0-9\s]*(?:(?:-(?:(?:[A-Za-z\s][A-Za-z0-9\s]*)|(?:[0-9\s]*)))*))-(?:(?<SizeLabel>(?:\d+x)?(?:\d+\.)?\d+[A-Za-z](?:-[A-Za-z]+(\d+\.)?\d+[A-Za-z]+)?)(?:-(?<FineTune>[A-Za-z0-9\s-]+))?)?-(?:(?<Version>v\d+(?:\.\d+)*))(?:-(?<Encoding>(?!LoRA|vocab)[\w_]+))?(?:-(?<Type>LoRA|vocab))?(?:-(?<Shard>\d{5}-of-\d{5}))?\.gguf$/;

function parseGGUFFilename(filename) {
  const match = ggufRegex.exec(filename);
  if (!match)
    return null;
  const {BaseName = null, SizeLabel = null, FineTune = null, Version = "v1.0", Encoding = null, Type = null, Shard = null} = match.groups;
  return {BaseName: BaseName, SizeLabel: SizeLabel, FineTune: FineTune, Version: Version, Encoding: Encoding, Type: Type, Shard: Shard};
}

const testCases = [
  {filename: 'Mixtral-8x7B-v0.1-KQ2.gguf',                         expected: { BaseName: 'Mixtral',              SizeLabel: '8x7B',     FineTune: null, Version: 'v0.1',   Encoding: 'KQ2',  Type: null, Shard: null}},
  {filename: 'Grok-100B-v1.0-Q4_0-00003-of-00009.gguf',            expected: { BaseName: 'Grok',                 SizeLabel: '100B',     FineTune: null, Version: 'v1.0',   Encoding: 'Q4_0', Type: null, Shard: "00003-of-00009"}},
  {filename: 'Hermes-2-Pro-Llama-3-8B-v1.0-F16.gguf',              expected: { BaseName: 'Hermes-2-Pro-Llama-3', SizeLabel: '8B', FineTune: null, Version: 'v1.0',   Encoding: 'F16',  Type: null, Shard: null}},
  {filename: 'Phi-3-mini-3.8B-ContextLength4k-instruct-v1.0.gguf', expected: { BaseName: 'Phi-3-mini',   SizeLabel: '3.8B-ContextLength4k', FineTune: 'instruct', Version: 'v1.0',   Encoding: null,  Type: null, Shard: null}},
  {filename: 'not-a-known-arrangement.gguf',                       expected: null},
];

testCases.forEach(({ filename, expected }) => {
  const result = parseGGUFFilename(filename);
  const passed = JSON.stringify(result) === JSON.stringify(expected);
  console.log(`${filename}: ${passed ? "PASS" : "FAIL"}`);
  if (!passed) {
      console.log(result);
      console.log(expected);
  }
});

1.2. File Structure

在这里插入图片描述
GGUF v3 https://github.com/mishig25

GGUF files are structured as follows. They use a global alignment specified in the general.alignment metadata field, referred to as ALIGNMENT below. Where required, the file is padded with 0x00 bytes to the next multiple of general.alignment.

Fields, including arrays, are written sequentially without alignment unless otherwise specified.
除非另有说明,Fields (including arrays) 均按顺序写入且不对齐。

Models are little-endian by default. They can also come in big-endian for use with big-endian computers; in this case, all values (including metadata values and tensors) will also be big-endian. At the time of writing, there is no way to determine if a model is big-endian; this may be rectified in future versions. If no additional information is provided, assume the model is little-endian.

enum ggml_type: uint32_t {
    GGML_TYPE_F32     = 0,
    GGML_TYPE_F16     = 1,
    GGML_TYPE_Q4_0    = 2,
    GGML_TYPE_Q4_1    = 3,
    // GGML_TYPE_Q4_2 = 4, support has been removed
    // GGML_TYPE_Q4_3 = 5, support has been removed
    GGML_TYPE_Q5_0    = 6,
    GGML_TYPE_Q5_1    = 7,
    GGML_TYPE_Q8_0    = 8,
    GGML_TYPE_Q8_1    = 9,
    GGML_TYPE_Q2_K    = 10,
    GGML_TYPE_Q3_K    = 11,
    GGML_TYPE_Q4_K    = 12,
    GGML_TYPE_Q5_K    = 13,
    GGML_TYPE_Q6_K    = 14,
    GGML_TYPE_Q8_K    = 15,
    GGML_TYPE_IQ2_XXS = 16,
    GGML_TYPE_IQ2_XS  = 17,
    GGML_TYPE_IQ3_XXS = 18,
    GGML_TYPE_IQ1_S   = 19,
    GGML_TYPE_IQ4_NL  = 20,
    GGML_TYPE_IQ3_S   = 21,
    GGML_TYPE_IQ2_S   = 22,
    GGML_TYPE_IQ4_XS  = 23,
    GGML_TYPE_I8      = 24,
    GGML_TYPE_I16     = 25,
    GGML_TYPE_I32     = 26,
    GGML_TYPE_I64     = 27,
    GGML_TYPE_F64     = 28,
    GGML_TYPE_IQ1_M   = 29,
    GGML_TYPE_COUNT,
};

enum gguf_metadata_value_type: uint32_t {
    // The value is a 8-bit unsigned integer.
    GGUF_METADATA_VALUE_TYPE_UINT8 = 0,
    // The value is a 8-bit signed integer.
    GGUF_METADATA_VALUE_TYPE_INT8 = 1,
    // The value is a 16-bit unsigned little-endian integer.
    GGUF_METADATA_VALUE_TYPE_UINT16 = 2,
    // The value is a 16-bit signed little-endian integer.
    GGUF_METADATA_VALUE_TYPE_INT16 = 3,
    // The value is a 32-bit unsigned little-endian integer.
    GGUF_METADATA_VALUE_TYPE_UINT32 = 4,
    // The value is a 32-bit signed little-endian integer.
    GGUF_METADATA_VALUE_TYPE_INT32 = 5,
    // The value is a 32-bit IEEE754 floating point number.
    GGUF_METADATA_VALUE_TYPE_FLOAT32 = 6,
    // The value is a boolean.
    // 1-byte value where 0 is false and 1 is true.
    // Anything else is invalid, and should be treated as either the model being invalid or the reader being buggy.
    GGUF_METADATA_VALUE_TYPE_BOOL = 7,
    // The value is a UTF-8 non-null-terminated string, with length prepended.
    GGUF_METADATA_VALUE_TYPE_STRING = 8,
    // The value is an array of other values, with the length and type prepended.
    ///
    // Arrays can be nested, and the length of the array is the number of elements in the array, not the number of bytes.
    GGUF_METADATA_VALUE_TYPE_ARRAY = 9,
    // The value is a 64-bit unsigned little-endian integer.
    GGUF_METADATA_VALUE_TYPE_UINT64 = 10,
    // The value is a 64-bit signed little-endian integer.
    GGUF_METADATA_VALUE_TYPE_INT64 = 11,
    // The value is a 64-bit IEEE754 floating point number.
    GGUF_METADATA_VALUE_TYPE_FLOAT64 = 12,
};

// A string in GGUF.
struct gguf_string_t {
    // The length of the string, in bytes.
    uint64_t len;
    // The string as a UTF-8 non-null-terminated string.
    char string[len];
};

union gguf_metadata_value_t {
    uint8_t uint8;
    int8_t int8;
    uint16_t uint16;
    int16_t int16;
    uint32_t uint32;
    int32_t int32;
    float float32;
    uint64_t uint64;
    int64_t int64;
    double float64;
    bool bool_;
    gguf_string_t string;
    struct {
        // Any value type is valid, including arrays.
        gguf_metadata_value_type type;
        // Number of elements, not bytes
        uint64_t len;
        // The array of values.
        gguf_metadata_value_t array[len];
    } array;
};

struct gguf_metadata_kv_t {
    // The key of the metadata. It is a standard GGUF string, with the following caveats:
    // - It must be a valid ASCII string.
    // - It must be a hierarchical key, where each segment is `lower_snake_case` and separated by a `.`.
    // - It must be at most 2^16-1/65535 bytes long.
    // Any keys that do not follow these rules are invalid.
    gguf_string_t key;

    // The type of the value.
    // Must be one of the `gguf_metadata_value_type` values.
    gguf_metadata_value_type value_type;
    // The value.
    gguf_metadata_value_t value;
};

struct gguf_header_t {
    // Magic number to announce that this is a GGUF file.
    // Must be `GGUF` at the byte level: `0x47` `0x47` `0x55` `0x46`.
    // Your executor might do little-endian byte order, so it might be
    // check for 0x46554747 and letting the endianness cancel out.
    // Consider being *very* explicit about the byte order here.
    uint32_t magic;
    // The version of the format implemented.
    // Must be `3` for version described in this spec, which introduces big-endian support.
    //
    // This version should only be increased for structural changes to the format.
    // Changes that do not affect the structure of the file should instead update the metadata
    // to signify the change.
    uint32_t version;
    // The number of tensors in the file.
    // This is explicit, instead of being included in the metadata, to ensure it is always present
    // for loading the tensors.
    uint64_t tensor_count;
    // The number of metadata key-value pairs.
    uint64_t metadata_kv_count;
    // The metadata key-value pairs.
    gguf_metadata_kv_t metadata_kv[metadata_kv_count];
};

uint64_t align_offset(uint64_t offset) {
    return offset + (ALIGNMENT - (offset % ALIGNMENT)) % ALIGNMENT;
}

struct gguf_tensor_info_t {
    // The name of the tensor. It is a standard GGUF string, with the caveat that
    // it must be at most 64 bytes long.
    gguf_string_t name;
    // The number of dimensions in the tensor.
    // Currently at most 4, but this may change in the future.
    uint32_t n_dimensions;
    // The dimensions of the tensor.
    uint64_t dimensions[n_dimensions];
    // The type of the tensor.
    ggml_type type;
    // The offset of the tensor's data in this file in bytes.
    //
    // This offset is relative to `tensor_data`, not to the start
    // of the file, to make it easier for writers to write the file.
    // Readers should consider exposing this offset relative to the
    // file to make it easier to read the data.
    //
    // Must be a multiple of `ALIGNMENT`. That is, `align_offset(offset) == offset`.
    uint64_t offset;
};

struct gguf_file_t {
    // The header of the file.
    gguf_header_t header;

    // Tensor infos, which can be used to locate the tensor data.
    gguf_tensor_info_t tensor_infos[header.tensor_count];

    // Padding to the nearest multiple of `ALIGNMENT`.
    //
    // That is, if `sizeof(header) + sizeof(tensor_infos)` is not a multiple of `ALIGNMENT`,
    // this padding is added to make it so.
    //
    // This can be calculated as `align_offset(position) - position`, where `position` is
    // the position of the end of `tensor_infos` (i.e. `sizeof(header) + sizeof(tensor_infos)`).
    uint8_t _padding[];

    // Tensor data.
    //
    // This is arbitrary binary data corresponding to the weights of the model. This data should be close
    // or identical to the data in the original model file, but may be different due to quantization or
    // other optimizations for inference. Any such deviations should be recorded in the metadata or as
    // part of the architecture definition.
    //
    // Each tensor's data must be stored within this array, and located through its `tensor_infos` entry.
    // The offset of each tensor's data must be a multiple of `ALIGNMENT`, and the space between tensors
    // should be padded to `ALIGNMENT` bytes.
    uint8_t tensor_data[];
};

2. Standardized key-value pairs

The following key-value pairs are standardized. This list may grow in the future as more use cases are discovered. Where possible, names are shared with the original model definitions to make it easier to map between the two.

Not all of these are required, but they are all recommended. Keys that are required are bolded. For omitted pairs, the reader should assume that the value is unknown and either default or error as appropriate.
并非所有这些都是必需的,但它们都是推荐的。必需的键以粗体显示。对于省略的对,读者应假设该值是未知的,并且是默认值或错误 (视情况而定)。

The community can develop their own key-value pairs to carry additional data. However, these should be namespaced with the relevant community name to avoid collisions. For example, the rustformers community might use rustformers. as a prefix for all of their keys.
社区可以开发自己的键值对来承载更多数据。但是,这些键值对应使用相关社区名称进行命名空间划分,以避免冲突。例如, rustformers 社区可能会使用 rustformers. 作为其所有键的前缀。

If a particular community key is widely used, it may be promoted to a standardized key.

By convention, most counts/lengths/etc are uint64 unless otherwise specified. This is to allow for larger models to be supported in the future. Some models may use uint32 for their values; it is recommended that readers support both.

2.1. General

2.1.1. Required

  • general.architecture: string: describes what architecture this model implements. All lowercase ASCII, with only [a-z0-9]+ characters allowed. Known values include:
    • llama
    • mpt
    • gptneox
    • gptj
    • gpt2
    • bloom
    • falcon
    • mamba
    • rwkv
  • general.quantization_version: uint32: The version of the quantization format. Not required if the model is not quantized (i.e. no tensors are quantized). If any tensors are quantized, this _must_ be present. This is separate to the quantization scheme of the tensors itself; the quantization version may change without changing the scheme’s name (e.g. the quantization scheme is Q5_K, and the quantization version is 4).
  • general.alignment: uint32: the global alignment to use, as described above. This can vary to allow for different alignment schemes, but it must be a multiple of 8. Some writers may not write the alignment. If the alignment is not specified, assume it is 32.

2.1.2. General metadata

  • general.name: string: The name of the model. This should be a human-readable name that can be used to identify the model. It should be unique within the community that the model is defined in.
  • general.author: string: The author of the model.
  • general.version: string: The version of the model.
  • general.organization: string: The organization of the model.
  • general.basename: string: The base model name / architecture of the model
  • general.finetune: string: What has the base model been optimized toward.
  • general.description: string: free-form description of the model including anything that isn’t covered by the other fields
  • general.quantized_by: string: The name of the individual who quantized the model
  • general.size_label: string: Size class of the model, such as number of weights and experts. (Useful for leader boards)
  • general.license: string: License of the model, expressed as a SPDX license expression (e.g. "MIT OR Apache-2.0). Do not include any other information, such as the license text or the URL to the license.
  • general.license.name: string: Human friendly license name
  • general.license.link: string: URL to the license.
  • general.url: string: URL to the model’s homepage. This can be a GitHub repo, a paper, etc.
  • general.doi: string: Digital Object Identifier (DOI) https://www.doi.org/
  • general.uuid: string: Universally unique identifier
  • general.repo_url: string: URL to the model’s repository such as a GitHub repo or HuggingFace repo
  • general.tags: string[]: List of tags that can be used as search terms for a search engine or social media
  • general.languages: string[]: What languages can the model speak. Encoded as ISO 639 two letter codes
  • general.datasets: string[]: Links or references to datasets that the model was trained upon
  • general.file_type: uint32: An enumerated value describing the type of the majority of the tensors in the file. Optional; can be inferred from the tensor types.
    • ALL_F32 = 0
    • MOSTLY_F16 = 1
    • MOSTLY_Q4_0 = 2
    • MOSTLY_Q4_1 = 3
    • MOSTLY_Q4_1_SOME_F16 = 4
    • MOSTLY_Q4_2 = 5 (support removed)
    • MOSTLY_Q4_3 = 6 (support removed)
    • MOSTLY_Q8_0 = 7
    • MOSTLY_Q5_0 = 8
    • MOSTLY_Q5_1 = 9
    • MOSTLY_Q2_K = 10
    • MOSTLY_Q3_K_S = 11
    • MOSTLY_Q3_K_M = 12
    • MOSTLY_Q3_K_L = 13
    • MOSTLY_Q4_K_S = 14
    • MOSTLY_Q4_K_M = 15
    • MOSTLY_Q5_K_S = 16
    • MOSTLY_Q5_K_M = 17
    • MOSTLY_Q6_K = 18

2.1.3. Source metadata

Information about where this model came from. This is useful for tracking the provenance of the model, and for finding the original source if the model is modified. For a model that was converted from GGML, for example, these keys would point to the model that was converted from.
有关此模型来源的信息。这对于追踪模型的出处以及在模型被修改时查找原始来源非常有用。

  • general.source.url: string: URL to the source of the model’s homepage. This can be a GitHub repo, a paper, etc.

  • general.source.doi: string: Source Digital Object Identifier (DOI) https://www.doi.org/

  • general.source.uuid: string: Source Universally unique identifier

  • general.source.repo_url: string: URL to the source of the model’s repository such as a GitHub repo or HuggingFace repo

  • general.base_model.count: uint32: Number of parent models

  • general.base_model.{id}.name: string: The name of the parent model.

  • general.base_model.{id}.author: string: The author of the parent model.

  • general.base_model.{id}.version: string: The version of the parent model.

  • general.base_model.{id}.organization: string: The organization of the parent model.

  • general.base_model.{id}.url: string: URL to the source of the parent model’s homepage. This can be a GitHub repo, a paper, etc.

  • general.base_model.{id}.doi: string: Parent Digital Object Identifier (DOI) https://www.doi.org/

  • general.base_model.{id}.uuid: string: Parent Universally unique identifier

  • general.base_model.{id}.repo_url: string: URL to the source of the parent model’s repository such as a GitHub repo or HuggingFace repo

2.2. LLM

In the following, [llm] is used to fill in for the name of a specific LLM architecture. For example, llama for LLaMA, mpt for MPT, etc. If mentioned in an architecture’s section, it is required for that architecture, but not all keys are required for all architectures. Consult the relevant section for more information.

  • [llm].context_length: uint64: Also known as n_ctx. length of the context (in tokens) that the model was trained on. For most architectures, this is the hard limit on the length of the input. Architectures, like RWKV, that are not reliant on transformer-style attention may be able to handle larger inputs, but this is not guaranteed.
  • [llm].embedding_length: uint64: Also known as n_embd. Embedding layer size.
  • [llm].block_count: uint64: The number of blocks of attention+feed-forward layers (i.e. the bulk of the LLM). Does not include the input or embedding layers.
  • [llm].feed_forward_length: uint64: Also known as n_ff. The length of the feed-forward layer.
  • [llm].use_parallel_residual: bool: Whether or not the parallel residual logic should be used.
  • [llm].tensor_data_layout: string: When a model is converted to GGUF, tensors may be rearranged to improve performance. This key describes the layout of the tensor data. This is not required; if not present, it is assumed to be reference.
    • reference: tensors are laid out in the same order as the original model
    • further options can be found for each architecture in their respective sections
  • [llm].expert_count: uint32: Number of experts in MoE models (optional for non-MoE arches).
  • [llm].expert_used_count: uint32: Number of experts used during each token token evaluation (optional for non-MoE arches).

2.2.1. Attention

  • [llm].attention.head_count: uint64: Also known as n_head. Number of attention heads.
  • [llm].attention.head_count_kv: uint64: The number of heads per group used in Grouped-Query-Attention. If not present or if present and equal to [llm].attention.head_count, the model does not use GQA.
  • [llm].attention.max_alibi_bias: float32: The maximum bias to use for ALiBI.
  • [llm].attention.clamp_kqv: float32: Value (C) to clamp the values of the Q, K, and V tensors between ([-C, C]).
  • [llm].attention.layer_norm_epsilon: float32: Layer normalization epsilon.
  • [llm].attention.layer_norm_rms_epsilon: float32: Layer RMS normalization epsilon.
  • [llm].attention.key_length: uint32: The optional size of a key head, d k d_k dk. If not specified, it will be n_embd / n_head.
  • [llm].attention.value_length: uint32: The optional size of a value head, d v d_v dv. If not specified, it will be n_embd / n_head.

2.2.2. RoPE

  • [llm].rope.dimension_count: uint64: The number of rotary dimensions for RoPE.
  • [llm].rope.freq_base: float32: The base frequency for RoPE.
2.2.2.1. Scaling

The following keys describe RoPE scaling parameters:

  • [llm].rope.scaling.type: string: Can be none, linear, or yarn.
  • [llm].rope.scaling.factor: float32: A scale factor for RoPE to adjust the context length.
  • [llm].rope.scaling.original_context_length: uint32_t: The original context length of the base model.
  • [llm].rope.scaling.finetuned: bool: True if model has been finetuned with RoPE scaling.

Note that older models may not have these keys, and may instead use the following key:

  • [llm].rope.scale_linear: float32: A linear scale factor for RoPE to adjust the context length.

It is recommended that models use the newer keys if possible, as they are more flexible and allow for more complex scaling schemes. Executors will need to support both indefinitely.

2.2.3. SSM

  • [llm].ssm.conv_kernel: uint32: The size of the rolling/shift state.
  • [llm].ssm.inner_size: uint32: The embedding size of the states.
  • [llm].ssm.state_size: uint32: The size of the recurrent state.
  • [llm].ssm.time_step_rank: uint32: The rank of time steps.

2.2.4. Models

The following sections describe the metadata for each model architecture. Each key specified _must_ be present.

2.2.4.1. LLaMA
  • llama.context_length
  • llama.embedding_length
  • llama.block_count
  • llama.feed_forward_length
  • llama.rope.dimension_count
  • llama.attention.head_count
  • llama.attention.layer_norm_rms_epsilon
2.2.4.1.1. Optional
  • llama.rope.scale
  • llama.attention.head_count_kv
  • llama.tensor_data_layout:
    • Meta AI original pth:
      def permute(weights: NDArray, n_head: int) -> NDArray:
          return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
                      .swapaxes(1, 2)
                      .reshape(weights.shape))
      
  • llama.expert_count
  • llama.expert_used_count
2.2.4.2. MPT
  • mpt.context_length
  • mpt.embedding_length
  • mpt.block_count
  • mpt.attention.head_count
  • mpt.attention.alibi_bias_max
  • mpt.attention.clip_kqv
  • mpt.attention.layer_norm_epsilon
2.2.4.3. GPT-NeoX
  • gptneox.context_length
  • gptneox.embedding_length
  • gptneox.block_count
  • gptneox.use_parallel_residual
  • gptneox.rope.dimension_count
  • gptneox.attention.head_count
  • gptneox.attention.layer_norm_epsilon
2.2.4.3.1. Optional
  • gptneox.rope.scale
2.2.4.4. GPT-J
  • gptj.context_length
  • gptj.embedding_length
  • gptj.block_count
  • gptj.rope.dimension_count
  • gptj.attention.head_count
  • gptj.attention.layer_norm_epsilon
2.2.4.4.1. Optional
  • gptj.rope.scale
2.2.4.5. GPT-2
  • gpt2.context_length
  • gpt2.embedding_length
  • gpt2.block_count
  • gpt2.attention.head_count
  • gpt2.attention.layer_norm_epsilon
2.2.4.6. BLOOM
  • bloom.context_length
  • bloom.embedding_length
  • bloom.block_count
  • bloom.feed_forward_length
  • bloom.attention.head_count
  • bloom.attention.layer_norm_epsilon
2.2.4.7. Falcon
  • falcon.context_length
  • falcon.embedding_length
  • falcon.block_count
  • falcon.attention.head_count
  • falcon.attention.head_count_kv
  • falcon.attention.use_norm
  • falcon.attention.layer_norm_epsilon
2.2.4.7.1. Optional
  • falcon.tensor_data_layout:

    • jploski (author of the original GGML implementation of Falcon):

      # The original query_key_value tensor contains n_head_kv "kv groups",
      # each consisting of n_head/n_head_kv query weights followed by one key
      # and one value weight (shared by all query heads in the kv group).
      # This layout makes it a big pain to work with in GGML.
      # So we rearrange them here,, so that we have n_head query weights
      # followed by n_head_kv key weights followed by n_head_kv value weights,
      # in contiguous fashion.
      
      if "query_key_value" in src:
          qkv = model[src].view(
              n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
      
          q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
          k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
          v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
      
          model[src] = torch.cat((q,k,v)).reshape_as(model[src])
      
2.2.4.8. Mamba
  • mamba.context_length
  • mamba.embedding_length
  • mamba.block_count
  • mamba.ssm.conv_kernel
  • mamba.ssm.inner_size
  • mamba.ssm.state_size
  • mamba.ssm.time_step_rank
  • mamba.attention.layer_norm_rms_epsilon
2.2.4.9. RWKV

The vocabulary size is the same as the number of rows in the head matrix.

  • rwkv.architecture_version: uint32: The only allowed value currently is 4. Version 5 is expected to appear some time in the future.
  • rwkv.context_length: uint64: Length of the context used during training or fine-tuning. RWKV is able to handle larger context than this limit, but the output quality may suffer.
  • rwkv.block_count: uint64
  • rwkv.embedding_length: uint64
  • rwkv.feed_forward_length: uint64
2.2.4.10. Whisper

Keys that do not have types defined should be assumed to share definitions with llm. keys.
(For example, whisper.context_length is equivalent to llm.context_length.)
This is because they are both transformer models.

  • whisper.encoder.context_length

  • whisper.encoder.embedding_length

  • whisper.encoder.block_count

  • whisper.encoder.mels_count: uint64

  • whisper.encoder.attention.head_count

  • whisper.decoder.context_length

  • whisper.decoder.embedding_length

  • whisper.decoder.block_count

  • whisper.decoder.attention.head_count

2.2.5. Prompting

TODO: Include prompt format, and/or metadata about how it should be used (instruction, conversation, autocomplete, etc).

2.3. LoRA

TODO: Figure out what metadata is needed for LoRA. Probably desired features:

  • match an existing model exactly, so that it can’t be misapplied
  • be marked as a LoRA so executors won’t try to run it by itself

Should this be an architecture, or should it share the details of the original model with additional fields to mark it as a LoRA?

2.4. Tokenizer

The following keys are used to describe the tokenizer of the model. It is recommended that model authors support as many of these as possible, as it will allow for better tokenization quality with supported executors.

2.4.1. GGML

GGML supports an embedded vocabulary that enables inference of the model, but implementations of tokenization using this vocabulary (i.e. llama.cpp’s tokenizer) may have lower accuracy than the original tokenizer used for the model. When a more accurate tokenizer is available and supported, it should be used instead.
GGML 支持嵌入词汇表,可实现模型推理,但使用此词汇表 (即 llama.cpp 的标记器) 的标记化实现的准确率可能低于用于模型的原始标记器。当有更准确的标记器可用且受支持时,应改用它。

It is not guaranteed to be standardized across models, and may change in the future. It is recommended that model authors use a more standardized tokenizer if possible.
建议模型作者尽可能使用更标准化的标记器。

  • tokenizer.ggml.model: string: The name of the tokenizer model.
    • llama: Llama style SentencePiece (tokens and scores extracted from HF tokenizer.model)
    • replit: Replit style SentencePiece (tokens and scores extracted from HF spiece.model)
    • gpt2: GPT-2 / GPT-NeoX style BPE (tokens extracted from HF tokenizer.json)
    • rwkv: RWKV tokenizer
  • tokenizer.ggml.tokens: array[string]: A list of tokens indexed by the token ID used by the model.
  • tokenizer.ggml.scores: array[float32]: If present, the score/probability of each token. If not present, all tokens are assumed to have equal probability. If present, it must have the same length and index as tokens.
    如果存在,则为每个 token 的分数/概率。如果不存在,则假定所有 token 具有相同的概率。如果存在,则必须具有与 tokens 相同的长度和索引。
  • tokenizer.ggml.token_type: array[int32]: The token type (1=normal, 2=unknown, 3=control, 4=user defined, 5=unused, 6=byte). If present, it must have the same length and index as tokens.
  • tokenizer.ggml.merges: array[string]: If present, the merges of the tokenizer. If not present, the tokens are assumed to be atomic.
  • 如果存在,则 tokenizer 会进行合并。如果不存在,则假定 token 是原子的。
  • tokenizer.ggml.added_tokens: array[string]: If present, tokens that were added after training.
2.4.1.1. Special tokens
  • tokenizer.ggml.bos_token_id: uint32: Beginning of sequence marker
  • tokenizer.ggml.eos_token_id: uint32: End of sequence marker
  • tokenizer.ggml.unknown_token_id: uint32: Unknown token
  • tokenizer.ggml.separator_token_id: uint32: Separator token
  • tokenizer.ggml.padding_token_id: uint32: Padding token

2.4.2. Hugging Face

Hugging Face maintains their own tokenizers library that supports a wide variety of tokenizers. If your executor uses this library, it may be able to use the model’s tokenizer directly.

  • tokenizer.huggingface.json: string: the entirety of the HF tokenizer.json for a given model (e.g. https://huggingface.co/mosaicml/mpt-7b-instruct/blob/main/tokenizer.json). Included for compatibility with executors that support HF tokenizers directly.

2.4.3. Other

Other tokenizers may be used, but are not necessarily standardized. They may be executor-specific. They will be documented here as they are discovered/further developed.

  • tokenizer.rwkv.world: string: a RWKV World tokenizer, like https://github.com/BlinkDL/ChatRWKV/blob/main/tokenizer/rwkv_vocab_v20230424.txt. This text file should be included verbatim.
  • tokenizer.chat_template : string: a Jinja template that specifies the input format expected by the model. For more details see: https://huggingface.co/docs/transformers/main/en/chat_templating

2.5. Computation graph

This is a future extension and still needs to be discussed, and may necessitate a new GGUF version. At the time of writing, the primary blocker is the stabilization of the computation graph format.
这是未来的扩展,仍需讨论,并且可能需要新的 GGUF 版本。在撰写本文时,主要阻碍因素是计算图格式的稳定性。

A sample computation graph of GGML nodes could be included in the model itself, allowing an executor to run the model without providing its own implementation of the architecture. This would allow for a more consistent experience across executors, and would allow for more complex architectures to be supported without requiring the executor to implement them.
GGML 节点的计算图示例可以包含在模型本身中,从而允许执行器运行模型而无需提供其自己的架构实现。这将允许在执行器之间获得更一致的体验,并且允许支持更复杂的架构而无需执行器实现它们。

3. Standardized tensor names

To minimize complexity and maximize compatibility, it is recommended that models using the transformer architecture use the following naming convention for their tensors:
为了最大限度地降低复杂性并最大限度地提高兼容性,建议使用 Transformer 架构的模型对其张量使用以下命名约定。

3.1. Base layers

AA.weight AA.bias

where AA can be:

  • token_embd: Token embedding layer
  • pos_embd: Position embedding layer
  • output_norm: Output normalization layer
  • output: Output layer

3.2. Attention and feed-forward layer blocks

blk.N.BB.weight blk.N.BB.bias

where N signifies the block number a layer belongs to, and where BB could be:

  • attn_norm: Attention normalization layer

  • attn_norm_2: Attention normalization layer

  • attn_qkv: Attention query-key-value layer

  • attn_q: Attention query layer

  • attn_k: Attention key layer

  • attn_v: Attention value layer

  • attn_output: Attention output layer

  • ffn_norm: Feed-forward network normalization layer

  • ffn_up: Feed-forward network “up” layer

  • ffn_gate: Feed-forward network “gate” layer

  • ffn_down: Feed-forward network “down” layer

  • ffn_gate_inp: Expert-routing layer for the Feed-forward network in MoE models

  • ffn_gate_exp: Feed-forward network “gate” layer per expert in MoE models

  • ffn_down_exp: Feed-forward network “down” layer per expert in MoE models

  • ffn_up_exp: Feed-forward network “up” layer per expert in MoE models

  • ssm_in: State space model input projections layer

  • ssm_conv1d: State space model rolling/shift layer

  • ssm_x: State space model selective parametrization layer

  • ssm_a: State space model state compression layer

  • ssm_d: State space model skip connection layer

  • ssm_dt: State space model time step layer

  • ssm_out: State space model output projection layer

4. Version History

This document is actively updated to describe the current state of the metadata, and these changes are not tracked outside of the commits.

However, the format _itself_ has changed. The following sections describe the changes to the format itself.

4.1. v3

Adds big-endian support.

4.2. v2

Most countable values (lengths, etc) were changed from uint32 to uint64 to allow for larger models to be supported in the future.

4.3. v1

Initial version.

5. Historical State of Affairs (历史状况)

The following information is provided for context, but is not necessary to understand the rest of this document.
下列信息仅供参考,但对于理解本文档的其余部分并非必需。

5.1. Overview

At present, there are three GGML file formats floating around for LLMs:

  • GGML (unversioned): baseline format, with no versioning or alignment.
  • GGMF (versioned): the same as GGML, but with versioning. Only one version exists.
  • GGJT: Aligns the tensors to allow for use with mmap, which requires alignment. v1, v2 and v3 are identical, but the latter versions use a different quantization scheme that is incompatible with previous versions.
    v1、v2 和 v3 相同,但后者版本使用不同的量化方案,与之前的版本不兼容。

GGML is primarily used by the examples in ggml, while GGJT is used by llama.cpp models. Other executors may use any of the three formats, but this is not ‘officially’ supported.

These formats share the same fundamental structure:

  • a magic number with an optional version number
  • model-specific hyperparameters, including
    • metadata about the model, such as the number of layers, the number of heads, etc.
    • a ftype that describes the type of the majority of the tensors,
      • for GGML files, the quantization version is encoded in the ftype divided by 1000
  • an embedded vocabulary, which is a list of strings with length prepended. The GGMF/GGJT formats embed a float32 score next to the strings.
  • finally, a list of tensors with their length-prepended name, type, and (aligned, in the case of GGJT) tensor data

Notably, this structure does not identify what model architecture the model belongs to, nor does it offer any flexibility for changing the structure of the hyperparameters. This means that the only way to add new hyperparameters is to add them to the end of the list, which is a breaking change for existing models.
值得注意的是,这种结构无法识别模型属于哪种模型架构,也无法提供更改超参数结构的任何灵活性。这意味着添加新超参数的唯一方法是将它们添加到列表末尾,这对现有模型来说是一个重大变化。

5.2. Drawbacks

Unfortunately, over the last few months, there are a few issues that have become apparent with the existing models:

  • There’s no way to identify which model architecture a given model is for, because that information isn’t present
    无法确定给定模型适用于哪种模型架构,因为不存在该信息。
    • Similarly, existing programs cannot intelligently fail upon encountering new architectures
  • Adding or removing any new hyperparameters is a breaking change, which is impossible for a reader to detect without using heuristics
    添加或删除任何新的超参数都是重大变化,读者如果不使用启发式方法就不可能检测到。
  • Each model architecture requires its own conversion script to their architecture’s variant of GGML
    每个模型架构都需要自己的转换脚本来转换为其架构的 GGML 变体。
  • Maintaining backwards compatibility without breaking the structure of the format requires clever tricks, like packing the quantization version into the ftype, which are not guaranteed to be picked up by readers/writers, and are not consistent between the two formats
    在不破坏格式结构的情况下保持向后兼容性需要一些巧妙的技巧,例如将量化版本打包到 ftype 中,但这并不能保证读者/作者能够理解,并且两种格式之间也不一致。

5.3. Why not other formats?

There are a few other formats that could be used, but issues include:

  • requiring additional dependencies to load or save the model, which is complicated in a C environment
  • limited or no support for 4-bit quantization
  • existing cultural expectations (e.g. whether or not the model is a directory or a file)
  • lack of support for embedded vocabularies
  • lack of control over direction of future development (缺乏对未来发展方向的控制)

Ultimately, it is likely that GGUF will remain necessary for the foreseeable future, and it is better to have a single format that is well-documented and supported by all executors than to contort an existing format to fit the needs of GGML.
最终,GGUF 在可预见的未来很可能仍然是必要的,并且最好有一个有据可查且得到所有执行者支持的单一格式,而不是扭曲现有的格式来满足 GGML 的需求。

References

[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/
[2] ggml/docs/gguf.md
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/966156.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Conmi的正确答案——Rider中添加icon作为exe的图标

C#版本&#xff1a;.net 8.0 Rider版本&#xff1a;#RD-243.22562.250&#xff08;非商业使用版&#xff09; 1、添加图标到解决方案下&#xff1a; 2、打开“App.xaml”配置文件&#xff0c;添加配置&#xff1a; <Applicationx:Class"ComTransmit.App"xmlns&q…

告别手动操作!用Ansible user模块高效管理 Linux账户

在企业运维环境中&#xff0c;服务器的用户管理是一项基础但非常重要的任务。比如&#xff0c;当有新员工加入时&#xff0c;我们需要在多台服务器上为他们创建账户并分配合适的权限。而当员工离职或岗位发生变化时&#xff0c;我们也需要迅速禁用或删除他们的账户&#xff0c;…

C++小等于的所有奇数和=最大奇数除2加1的平方。

缘由 三种思路解题&#xff1a;依据算术推导得到一个规律&#xff1a;小等于的所有奇数和等于最大奇数除以2加1的平方。将在后续发布&#xff0c;总计有十种推导出来的实现代码。 int a 0,aa 1,aaa 0;cin >> a; while (aa<a) aaa aa, aa 2;cout << aaa;i…

【CPP】CPP经典面试题

文章目录 引言1. C 基础1.1 C 中的 const 关键字1.2 C 中的 static 关键字 2. 内存管理2.1 C 中的 new 和 delete2.2 内存泄漏 3. 面向对象编程3.1 继承和多态3.2 多重继承 4. 模板和泛型编程4.1 函数模板4.2 类模板 5. STL 和标准库5.1 容器5.2 迭代器 6. 高级特性6.1 移动语义…

深入浅出谈VR(虚拟现实、VR镜头)

1、VR是什么鬼&#xff1f; 近两年VR这次词火遍网上网下&#xff0c;到底什么是VR&#xff1f;VR是“Virtual Reality”&#xff0c;中文名字是虚拟现实&#xff0c;是指采用计算机技术为核心的现代高科技手段生成一种虚拟环境&#xff0c;用户借助特殊的输入/输出设备&#x…

【Redis】安装配置Redis超详细教程 / Linux版

Linux安装配置Redis超详细教程 安装redis依赖安装redis启动redis停止redisredis.conf常见配置设置redis为后台启动修改redis监听地址设置工作目录修改密码监听的端口号数据库数量设置redis最大内存设置日志文件设置redis开机自动启动 学习视频&#xff1a;黑马程序员Redis入门到…

[LeetCode]day16 242.有效的字母异位词

242. 有效的字母异位词 - 力扣&#xff08;LeetCode&#xff09; 题目描述 给定两个字符串 s 和 t &#xff0c;编写一个函数来判断 t 是否是 s 的 字母异位词 示例 1: 输入: s "anagram", t "nagaram" 输出: true示例 2: 输入: s "rat"…

[MoeCTF 2022]baby_file

题目 <html> <title>Heres a secret. Can you find it?</title> <?phpif(isset($_GET[file])){$file $_GET[file];include($file); }else{highlight_file(__FILE__); } ?> </html> 读取flag /?filephp://filter/readconvert.base64-encode…

Centos挂载镜像制作本地yum源,并补装图形界面

内网环境centos7.9安装图形页面内网环境制作本地yum源 上传镜像到服务器目录 创建目录并挂载镜像 #创建目录 cd /mnt/ mkdir iso#挂载 mount -o loop ./CentOS-7-x86_64-DVD-2009.iso ./iso #前面镜像所在目录&#xff0c;后面所挂载得目录#检查 [rootlocalhost mnt]# df -h…

判断您的Mac当前使用的是Zsh还是Bash:echo $SHELL、echo $0

要判断您的Mac当前使用的是Zsh还是Bash&#xff0c;可以使用以下方法&#xff1a; 查看默认Shell: 打开“终端”应用程序&#xff0c;然后输入以下命令&#xff1a; echo $SHELL这将显示当前默认使用的Shell。例如&#xff0c;如果输出是/bin/zsh&#xff0c;则说明您使用的是Z…

python 小游戏:扫雷

目录 1. 前言 2. 准备工作 3. 生成雷区 4. 鼠标点击扫雷 5. 胜利 or 失败 6. 游戏效果展示 7. 完整代码 1. 前言 本文使用 Pygame 实现的简化版扫雷游戏。 如上图所示&#xff0c;游戏包括基本的扫雷功能&#xff1a;生成雷区、左键点击扫雷、右键标记地雷、显示数字提示…

【重新认识C语言----文件管理篇】

目录 ​编辑 -----------------------------------------begin------------------------------------- 引言 1. 文件的基本概念 2. 文件指针 3. 文件的打开与关闭 3.1 打开文件 3.2 关闭文件 4. 文件的读写操作 4.1 读取文件 4.1.1 使用fgetc()读取文件 4.1.2 使用fg…

EasyExcel 导出合并层级单元格

EasyExcel 导出合并层级单元格 一、案例 案例一 1.相同订单号单元格进行合并 合并结果 案例二 1.相同订单号的单元格进行合并2.相同订单号的总数和总金额进行合并 合并结果 案例三 1.相同订单号的单元格进行合并2.相同订单号的商品分类进行合并3.相同订单号的总数和总金额…

WPF 进度条(ProgressBar)示例一

本文讲述&#xff1a;WPF 进度条(ProgressBar)简单的样式修改和使用。 进度显示界面&#xff1a;使用UserControl把ProgressBar和进度值以及要显示的内容全部组装在UserControl界面中&#xff0c;方便其他界面直接进行使用。 <UserControl x:Class"DefProcessBarDemo…

LabVIEW自定义测量参数怎么设置?

以下通过一个温度采集案例&#xff0c;说明在 LabVIEW 中设置自定义测量参数的具体方法&#xff1a; 案例背景 ​ 假设使用 NI USB-6009 数据采集卡 和 热电偶传感器 监测温度&#xff0c;需自定义以下参数&#xff1a; 采样率&#xff1a;1 kHz 输入量程&#xff1a;0~10 V&a…

新能源产业的质量革命:六西格玛培训如何重塑制造竞争力

在新能源行业狂飙突进的今天&#xff0c;企业若想在全球供应链中占据高地&#xff0c;仅靠技术突破已远远不够。制造效率的毫厘之差&#xff0c;可能成为市场话语权的千里之距。某光伏巨头曾因电池片良率低于行业均值1.5%&#xff0c;导致年损失超2.3亿元——这恰恰印证了六西格…

(11)gdb 笔记(4):设置执行方向 set exec-direction,

&#xff08;28&#xff09;引入 record 后&#xff0c;可以 设置执行方向 set exec-direction &#xff1a; 实践&#xff1a; &#xff08;29&#xff09; &#xff08;33&#xff09; 谢谢

redis持久化理论

0 前言 什么是持久化 redis操作都是在内存中&#xff0c;如果出现宕机的话&#xff0c;数据将不复存在&#xff0c;所以持久化是将内存中的数据刷盘到磁盘中&#xff0c;redis可以提供RDB和AOF将数据写入磁盘中。 一 持久化技术 本章节将介绍持久化RDB和AOF两个技术&#xf…

25/2/7 <机器人基础>雅可比矩阵计算 雅可比伪逆

雅可比矩阵计算 雅可比矩阵的定义 假设我们有一个简单的两个关节的平面机器人臂&#xff0c;其末端执行器的位置可以表示为&#xff1a; 其中&#xff1a; L1​ 和 L2 是机器人臂的长度。θ1​ 和 θ2是关节的角度。 计算雅可比矩阵 雅可比矩阵 JJ 的定义是将关节速度与末…

鸿蒙UI(ArkUI-方舟UI框架)- 使用文本

返回主章节 → 鸿蒙UI&#xff08;ArkUI-方舟UI框架&#xff09; 文本使用 文本显示 (Text/Span) Text是文本组件&#xff0c;通常用于展示用户视图&#xff0c;如显示文章的文字内容。Span则用于呈现显示行内文本。 创建文本 string字符串 Text("我是一段文本"…