grafana面板配置opentsdb

新增面板:
这里add-panel:
在这里插入图片描述
如果不是想新增面板而是想新增一行条目,则点击convert to row:
在这里插入图片描述
在新增的面板这里可以看到选择数据源
在这里插入图片描述
Aggregator:聚合条件,区分下第一行和第二行的aggregator,第一个是对指标值的聚合,第二个是对采样周期里的聚合
Alias:别名,根据需要进行自定义
这里的filter是用于过滤数据,主要有几种:
literal_or
获取单个文字值或一个 | 管道分隔的值列表,并以区分大小写的方式返回与结果匹配的任何时间序列。 这是一个非常有效的过滤器,因为它可以将字符串解析为 UID 并将其发送到存储层进行预过滤。 在 SQL 中,这类似于 IN 或 = 谓词。
Examples
host=literal_or(web01|web02|web03) In SQL: WHERE host IN (‘web01’, ‘web02’, ‘web03’)
host=literal_or(web01) In SQL: WHERE host = ‘web01’
iliteral_or
与 literal_or 相同,但不区分大小写。 请注意,这不像文字那样有效,或者因为它必须对存储中的所有行进行后处理。
not_literal_or
区分大小写的 literal_or 将返回与给定值列表 NOT 匹配的系列。 高效,因为它可以通过存储进行预处理。
not_iliteral_or
不区分大小写的not_literal_or。
regexp: tagv的过滤规则: 正则表达式匹配
wildcard: tagv的过滤规则: 通配符匹配,大小写敏感
iwildcard: tagv的过滤规则: 通配符匹配,忽略大小写

在使用 OpenTSDB 2.2 数据源时,请确保使用 Filters 或 Tags,因为它们是互斥的。如果同时使用,可能会得到奇怪的结果。
面板的json数据:
在这里插入图片描述

变量

在这里插入图片描述
在这里插入图片描述
name: 变量名,比如我这里取名为ip,到时候要使用这个变量名就用$ip来调用。

type: 变量类型,变量类型有多种,其中query表示这个变量是一个查询语句,type也可以是datasource,datasource就表示该变量代表一个数据源,如果是datasource你可以用该变量修改整个DashBoard的数据源,变量类型还可以是时间间隔Interval等等。这里我们选择query。

label: 是对应下拉框的名称,默认就是变量名,选择默认即可。

hide: 有三个值,分别为空,label,variable。选择label,表示不显示下拉框的名字。选择variable表示隐藏该变量,该变量不会在DashBoard上方显示出来。默认选择为空,这里也选默认。

Query options

Data source: 数据源

Refresh: 何时去更新变量的值,变量的值是通过查询数据源获取到的,但是数据源本身也会发生变化,所以要时不时的去更新变量的值,这样数据源的改变才会在变量对应的下拉框中显示出来。Refresh有三个值可以选择,Never:永不更新。On Dashboard Load:在DashBoard加载时更新。On Time Range Change:在时间范围变化时更新。此处,选择On Dashboard Load,当数据源发生更新是,刷新一下当前DashBoard,变量的值也会跟着发生更新。

Query:查询表达式,不同的数据源查询表达式都不同(这些可以到官网上查询:http://docs.grafana.org/features/datasources/)。

Regex:正则表达式,用来对抓取到的数据进行过滤,这里默认不过滤。

Sort:排序,对下拉框中的变量值做排序,排序的方式挺多的,默认是disable,表示查询结果是怎样下拉框就怎样显示。此处选disable。

上面图中的suggest_tagv() 是一个函数,用于在变量配置中动态生成标签值(Tag Values)的建议列表。这个函数通常用于 Prometheus 数据源,帮助用户在配置变量时自动填充标签值的选项。
作用
suggest_tagv() 函数的作用是根据指定的标签键(Tag Key)生成一个标签值的列表。这些标签值可以作为变量的选项,供用户在 Grafana 的仪表板中选择。
使用场景
假设你有一个 Prometheus 指标,其中包含多个标签,例如:

http_requests_total{host=“server1”, method=“get”, status=“200”}
http_requests_total{host=“server2”, method=“post”, status=“200”}
http_requests_total{host=“server1”, method=“get”, status=“404”}
如果你想要创建一个变量 $host,其值为所有唯一的 host 标签值,你可以使用 suggest_tagv() 函数来动态生成这些值。

Prometheus指标类型

1、计数器(Counter)
Counter类型指标被用于单调增加的测量结果。因此它们总是累积的数值,值只能上升。唯一的例外是Counter重启,在这种情况下,它的值会被重置为零。
Counter的实际值通常本身并不十分有用。一个计数器的值经常被用来计算两个时间戳之间的delta或者随时间变化的速率。
例如,Counter的一个典型用例是记录API调用次数,这是一个总是会增加的测量值。

# HELP http_requests_total Total number of http api requests
# TYPE http_requests_total counter

http_requests_total{api=“add_product”} 4633433
指标名称是http_requests_total,它有一个名为api的标签,值为add_product,Counter的值为4633433。这意味着自从上次服务启动或Counter重置以来,add_product的API已经被调用了4633433次。按照惯例,Counter类型的指标通常以_total为后缀。

这个绝对数字并没有给我们提供多少信息,但当与PromQL的rate函数(或其他监控后端的类似函数)一起使用时,它可以帮助我们了解该API每秒收到的请求数。下面的PromQL查询计算了过去5分钟内每秒的平均请求数。
rate(http_requests_total{api=“add_product”}[5m])
为了计算一段时期内的绝对变化,我们将使用delta函数,在PromQL中称为increate():
increase(http_requests_total{api=“add_product”}[5m])
这将返回过去5分钟内的总请求数,这相当于用每秒的速率乘以间隔时间的秒数

2、仪表(Gauge)
Gauge指标用于可以任意增加或减少的测量。这是你可能更熟悉的指标类型,因为即使没有经过额外处理的实际值也是有意义的,它们经常被使用到。例如,测量温度、CPU和内存使用的指标,或者队列的大小都是Gauge。
例如,为了测量一台主机的内存使用情况,我们可以使用一个Gauge指标,比如:

# HELP node_memory_used_bytes Total memory used in the node in bytes
# TYPE node_memory_used_bytes gauge

node_memory_used_bytes{hostname=“host1.domain.com”} 943348382
上面的指标表明,在测量时,节点host1.domain.com使用的内存约为900 MB。该指标的值是有意义的,不需要任何额外的计算,因为它告诉我们该节点上消耗了多少内存。
与使用Counter指标时不同,rate和delta函数对Gauge没有意义。然而,计算特定时间序列的平均数、最大值、最小值或百分比的函数经常与Gauge一起使用。在Prometheus中,这些函数的名称是avg_over_time、max_over_time、min_over_time和quantile_over_time。要计算过去10分钟内在host1.domain.com上使用的平均内存,你可以这样做:
avg_over_time(node_memory_used_bytes{hostname=“host1.domain.com”}[10m])
要使用Prometheus客户端库在Python中创建一个Gauge指标,你可以这样做:
from prometheus_client import Gauge
memory_used = Gauge(
‘node_memory_used_bytes’,
‘Total memory used in the node in bytes’,
[‘hostname’]
)
memory_used.labels(hostname=‘host1.domain.com’).set(943348382)
3、直方图(Histogram)
Histogram指标对于表示测量的分布很有用。它们经常被用来测量请求持续时间或响应大小。
直方图将整个测量范围划分为一组区间,称为桶,并计算每个桶中有多少测量值。
一个直方图指标包括几个项目:
一个包含测量次数的Counter。指标名称使用_count后缀。
一个包含所有测量值之和的Counter。指标名称使用_sum后缀。
直方图桶被暴露为一系列的Counter,使用指标名称的后缀_bucket和表示桶的上限的le label。Prometheus中的桶是包含桶的边界的,即一个上限为N的桶(即le label)包括所有数值小于或等于N的数据点。
例如,测量运行在host1.domain.com实例上的add_productAPI端点实例的响应时间的Histogram指标可以表示为:

http_request_duration_seconds_sum{api="add_product" instance="host1.domain.com"} 8953.332
http_request_duration_seconds_count{api="add_product" instance="host1.domain.com"} 27892
http_request_duration_seconds_bucket{api="add_product" instance="host1.domain.com" le="0"}
http_request_duration_seconds_bucket{api="add_product", instance="host1.domain.com", le="0.01"} 0
http_request_duration_seconds_bucket{api="add_product", instance="host1.domain.com", le="0.025"} 8
http_request_duration_seconds_bucket{api="add_product", instance="host1.domain.com", le="0.05"} 1672
http_request_duration_seconds_bucket{api="add_product", instance="host1.domain.com", le="0.1"} 8954
http_request_duration_seconds_bucket{api="add_product", instance="host1.domain.com", le="0.25"} 14251
http_request_duration_seconds_bucket{api="add_product", instance="host1.domain.com", le="0.5"} 24101
http_request_duration_seconds_bucket{api="add_product", instance="host1.domain.com", le="1"} 26351
http_request_duration_seconds_bucket{api="add_product", instance="host1.domain.com", le="2.5"} 27534
http_request_duration_seconds_bucket{api="add_product", instance="host1.domain.com", le="5"} 27814
http_request_duration_seconds_bucket{api="add_product", instance="host1.domain.com", le="10"} 27881
http_request_duration_seconds_bucket{api="add_product", instance="host1.domain.com", le="25"} 27890
http_request_duration_seconds_bucket{api="add_product", instance="host1.domain.com", le="+Inf"} 27892

4、汇总(Summary)
像直方图一样,Summary指标对于测量请求持续时间和响应体大小很有用。
像直方图一样,汇总度量对于测量请求持续时间和响应大小很有用。
一个Summary指标包括这些指标:
一个包含总测量次数的Counter。指标名称使用_count后缀。
一个包含所有测量值之和的Counter。指标名称使用_sum后缀。可以选择使用带有分位数标签的指标名称,来暴露一些测量值的分位数指标。由于你不希望这些量值是从应用程序运行的整个时间内测得的,Prometheus客户端库通常会使用流式的分位值,这些分位值是在一个滑动的(通常是可配置的)时间窗口上计算得到的。
例如,测量在host1.domain.com上运行的add_productAPI端点实例的响应时间的Summary指标可以表示为:

# HELP http_request_duration_seconds Api requests response time in seconds
# TYPE http_request_duration_seconds summary
http_request_duration_seconds_sum{api="add_product" instance="host1.domain.com"} 8953.332
http_request_duration_seconds_count{api="add_product" instance="host1.domain.com"} 27892
http_request_duration_seconds{api="add_product" instance="host1.domain.com" quantile="0"}
http_request_duration_seconds{api="add_product" instance="host1.domain.com" quantile="0.5"} 0.232227334
http_request_duration_seconds{api="add_product" instance="host1.domain.com" quantile="0.90"} 0.821139321
http_request_duration_seconds{api="add_product" instance="host1.domain.com" quantile="0.95"} 1.528948804
http_request_duration_seconds{api="add_product" instance="host1.domain.com" quantile="0.99"} 2.829188272
http_request_duration_seconds{api="add_product" instance="host1.domain.com" quantile="1"} 34.283829292

上面这个例子包括总和和计数以及五个分位数。分位数0相当于最小值,分位数1相当于最大值。分位数0.5是中位数,分位数0.90、0.95和0.99相当于在host1.domain.com上运行的add_product API端点响应时间的第90、95和99个百分位。
像直方图一样,Summary指标包括总和和计数,可用于计算随时间的平均值以及不同时间序列的平均值。
Summary提供了比Histogram更精确的百分位计算结果,但这些百分位有三个主要缺点:
首先,客户端计算百分位是很昂贵的。这是因为客户端库必须保持一个有序的数据点列表,以进行这种计算。在Prometheus SDK中的实现限制了内存中保留和排序的数据点的数量,这降低了准确性以换取效率的提高。注意,并非所有的Prometheus客户端库都支持汇总指标中的量值。例如,Python SDK就不支持。
第二,你要查询的量值必须由客户端预先定义。只有那些已经提供了指标的量值才能通过查询返回。没有办法在查询时计算其他百分位。增加一个新的百分位指标需要修改代码,该指标才可以被使用。
第三,也是最重要的一点,不可能把多个Summary指标进行聚合计算。这使得它们对动态现代系统中的大多数用例毫无用处,在这些用例中,通常我们对一个特定的组件感兴趣,这个视角是全局的,它不与特定的实例关联。
因此,想象一下,在我们的例子中,add_product的API端点运行在10个主机上,在这些服务之前有一个负载均衡器。我们没有任何聚合函数可以用来计算add_product API接口在所有请求中响应时间的第99百分位数,无论这些请求被发送到哪个后端实例上。我们只能看到每个主机的第99个百分点。同样地,我们也只能知道某个接口,比如add_productAPI端点的(在某个实例上的)第99百分位数,而不能对不同的接口进行聚合。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/965849.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

论文翻译学习:《DeepSeek-R1: 通过强化学习激励大型语言模型的推理能力》

摘要 我们介绍了我们的第一代推理模型 DeepSeek-R1-Zero 和 DeepSeek-R1。DeepSeek-R1-Zero 是一个通过大规模强化学习(RL)训练的模型,没有经过监督微调(SFT)作为初步步骤,展示了卓越的推理能力。通过强化…

【Uniapp-Vue3】从uniCloud中获取数据

需要先获取数据库对象: let db uniCloud.database(); 获取数据库中数据的方法: db.collection("数据表名称").get(); 所以就可以得到下面的这个模板: let 函数名 async () > { let res await db.collection("数据表名称…

【自然语言处理】TextRank 算法提取关键词(Python实现)

文章目录 前言PageRank 实现TextRank 简单版源码实现jieba工具包实现TextRank 前言 TextRank 算法是一种基于图的排序算法,主要用于文本处理中的关键词提取和文本摘要。它基于图中节点之间的关系来评估节点的重要性,类似于 Google 的 PageRank 算法。Tex…

免费windows pdf编辑工具

Epdf(完全免费) 作者:不染心 时间:2025/2/6 Github: https://github.com/dog-tired/Epdf Epdf Epdf 是一款使用 Rust 编写的 PDF 编辑器,目前仍在开发中。它提供了一系列实用的命令行选项,方便用户对 PDF …

星闪开发入门级教程之安装编译器与小项目烧录

系列文章目录 星闪开发入门级教程 好久不见,已经好几年没有发文章了,星闪-作为中国原生的新一代近距离无线联接技术品牌。我想着写点东西。为了适合新手,绝对小白文。 文章目录 系列文章目录前言一、Hispark Studio1.安装Hispark Studio2.安…

Caused by: org.springframework.beans.factory.UnsatisfiedDependencyException解决办法

1.问题描述 在编写完一个功能后,第一次启动这个模块的启动类时,报以下错误, 2.文件解决 检查了controller,service和mapper,均未发现有问题,核对了依赖也未发现依赖冲突 在网上也找了资料,有总结的比较好的: controller层service层dao层注解是否都使用正确?接口…

记录 | WPF基础学习Style局部和全局调用

目录 前言一、Style1.1 例子1.2 为样式起名字1.3 BasedOn 继承上一个样式 二、外部StyleStep1 创建资源字典BaseButtonStyle.xamlStep2 在资源字典中写入StyleStep3 App.xaml中写引用路径【全局】Step4 调用三、代码提供四、x:Key和x:Name区别 更新时间 前言 参考文章&#xff…

信创数据库使用问题汇总

笔者工作中需要使用多种信创数据库,在使用过程中发现一些问题,现记录如下。 1 OceanBase-Oracle租户的Python连接方式 用Python连接OB数据库的mysql租户可以使用连接mysql的包,但连接oracle租户是没有官方包的,必须使用基于jdbc…

多光谱成像技术在华为Mate70系列的应用

华为Mate70系列搭载了光谱技术的产物——红枫原色摄像头,这是一款150万像素的多光谱摄像头。 相较于普通摄像头,它具有以下优势: 色彩还原度高:色彩还原准确度提升约 120%,能捕捉更多光谱信息,使拍摄照片色…

Web3 与区块链:开启透明、安全的网络新时代

在这个信息爆炸的时代,我们对网络的透明性、安全性和隐私保护的需求日益增长。Web3,作为新一代互联网的代表,正携手区块链技术,引领我们走向一个更加透明、安全和去中心化的网络世界。本文将深入探讨 Web3 的基本概念、区块链技术…

[Android] 全球网测-版本号4.3.8

[Android] 全球网测 链接:https://pan.xunlei.com/s/VOIV5G3_UOFWnGuMQ_GlIW2OA1?pwdfrpe# 应用介绍 "全球网测"是由中国信通院产业与规划研究所自主研发的一款拥有宽带测速、上网体验和网络诊断等功能的综合测速软件。APP突出六大亮点优势&#xff1a…

AI智算-k8s部署DeepSeek Janus-Pro-7B 多模态大模型

文章目录 简介环境依赖模型下载下载Janus库GPU环境镜像模型manifest调用Janus多模态文生图 简介 DeepSeek Janus Pro 作为一款强大的多模态理解与生成框架,正在成为研究人员和开发者的热门选择。本文将详细介绍如何在云原生k8s环境中部署配置和使用 DeepSeek Janus…

windows 安装nvidaia驱动和cuda

安装nvidaia驱动和cuda 官网搜索下载驱动 https://www.nvidia.cn/drivers/lookup/ 这里查出来的都是最高支持什么版本的cuda 安装时候都默认精简就行 官网下载所需版本的cuda包 https://developer.nvidia.com/cuda-toolkit-archive 安装成功但是nvcc -V 失败 &#xff0c…

HAL库外设宝典:基于CubeMX的STM32开发手册(持续更新)

目录 前言 GPIO(通用输入输出引脚) 推挽输出模式 浮空输入和上拉输入模式 GPIO其他模式以及内部电路原理 输出驱动器 输入驱动器 中断 外部中断(EXTI) 深入中断(内部机制及原理) 外部中断/事件控…

动态规划(01背包问题)

目录 题目内容题目分析未装满情况思路一思路二代码实现滚动数组优化优化代码 恰好装满情况代码实现滚动数组优化 题目内容 你有一个背包,最多能容纳的体积是V。 现在有n个物品,第i个物品的体积为Vi​,价值为Wi (1)求这个背包至多能…

力扣.270. 最接近的二叉搜索树值(中序遍历思想)

文章目录 题目描述思路复杂度Code 题目描述 思路 遍历思想(利用二叉树的中序遍历) 本题的难点在于可能存在多个答案,并且要返回最小的那一个,为了解决这个问题,我门则要利用上二叉搜索树中序遍历为有序序列的特性,具体到代码中&a…

高效协同,Tita 助力项目管理场景革新

在当今快节奏、高度竞争的商业环境中,企业面临着前所未有的挑战:如何在有限资源下迅速响应市场变化,确保多个项目的高效执行并达成战略目标?答案就在于优化项目集程管理。而在这个过程中,Tita项目管理产品以其独特的优…

Java使用aspose实现pdf转word

Java使用aspose实现pdf转word 一、下载aspose-pdf-21.6.jar包【下载地址】&#xff0c;存放目录结构如图&#xff1b;配置pom.xml。 <!--pdf to word--> <dependency><groupId>com.aspose</groupId><artifactId>aspose-pdf</artifactId>…

【数据结构-C语言】绪论

文章目录 一、前言二、基本概念和术语2.1 数据元素、数据项和数据对象2.2 数据结构2.2.1 逻辑结构2.2.2 存储结构 2.3 时间复杂度 一、前言 数据结构部分是根据严蔚敏老师的《数据结构-C语言版第2版》书中内容整理的。 二、基本概念和术语 2.1 数据元素、数据项和数据对象 …

anaconda中可以import cv2,但是notebook中cv2 module not found

一、问题 anaconda中成功import cv2 但是jupyter notebook中却无法导入cv2 二、排查 anaconda中使用python路径如下&#xff1a; jupyter notebook中使用python路径如下&#xff1a; 可以发现路径不一致。 三、解决 ①查看可用的kernel ②选中想要修改的kernel&#xff0c;打…