第11章:根据 ShuffleNet V2 迁移学习医学图像分类任务:甲状腺结节检测

目录

1. Shufflenet V2

2. 甲状腺结节检测

2.1 数据集

2.2 训练参数

2.3 训练结果

2.4 可视化网页推理

3. 下载


1. Shufflenet V2

shufflenet v2 论文中提出衡量轻量级网络的性能不能仅仅依靠FLOPs计算量,还应该多方面的考虑,例如MAC(memory access cost),还应该比较在不同的硬件设备下的性能等等

因此,基于多方面的考虑。shufflenet v2 通过大量的实验和测试总结了轻量化网络的四个准则,然后根据这四条准则搭建了shufflenet v2网络

 

  1.  输入输出通道个数相同的时候,内存访问量MAC最小
  2. 分组卷积的分组数过大会增加MAC
  3. 碎片化操作会并行加速并不友好
  4. element-wise 操作带来的内存和耗时不可以忽略

每条原则的具体解释参考:ShuffleNet V2 迁移学习对花数据集训练_shufflenetv2进行预训练的效果-CSDN博客

2. 甲状腺结节检测

Shufflenet V2 实现的model部分代码如下面所示,这里如果采用官方预训练权重的话,会自动导入官方提供的最新版本的权重

这里提供了4种网络结构,分别对应output channels参数

2.1 数据集

数据集文件如下:

标签如下:

{
    "0": "0",
    "1": "1"
}

其中,训练集的总数为5103,验证集的总数为2185

2.2 训练参数

训练的参数如下:

    parser.add_argument("--model", default='x0_5', type=str,help='x0_5,x1_0,x1_5,x2_0')
    parser.add_argument("--pretrained", default=True, type=bool)       # 采用官方权重
    parser.add_argument("--freeze_layers", default=True, type=bool)    # 冻结权重

    parser.add_argument("--batch-size", default=8, type=int)
    parser.add_argument("--epochs", default=10, type=int)

    parser.add_argument("--optim", default='SGD', type=str,help='SGD,Adam,AdamW')         # 优化器选择

    parser.add_argument('--lr', default=0.01, type=float)
    parser.add_argument('--lrf',default=0.001,type=float)                  # 最终学习率 = lr * lrf

    parser.add_argument('--save_ret', default='runs', type=str)             # 保存结果
    parser.add_argument('--data_train',default='./data/train',type=str)           # 训练集路径
    parser.add_argument('--data_val',default='./data/val',type=str)               # 测试集路径

需要注意的是网络分类的个数不需要指定,摆放好数据集后,代码会根据数据集自动生成!

网络模型信息如下:

{
    "train parameters": {
        "model": "x0_5",
        "pretrained": true,
        "freeze_layers": true,
        "batch_size": 8,
        "epochs": 10,
        "optim": "SGD",
        "lr": 0.01,
        "lrf": 0.001,
        "save_folder": "runs"
    },
    "dataset": {
        "trainset number": 5103,
        "valset number": 2185,
        "number classes": 2
    },
    "model": {
        "total parameters": 343842.0,
        "train parameters": 2050,
        "flops": 43550112.0
    },

2.3 训练结果

所有的结果都保存在 save_ret 目录下,这里是 runs 

weights 下有最好和最后的权重,在训练完成后控制台会打印最好的epoch

这里只展示部分结果:可以看到网络没有完全收敛,增大epoch会得到更好的效果

训练日志:

    "epoch:9": {
        "train info": {
            "accuracy": 0.6607877718975881,
            "0": {
                "Precision": 0.6989,
                "Recall": 0.4334,
                "Specificity": 0.8471,
                "F1 score": 0.535
            },
            "1": {
                "Precision": 0.646,
                "Recall": 0.8471,
                "Specificity": 0.4334,
                "F1 score": 0.733
            },
            "mean precision": 0.67245,
            "mean recall": 0.64025,
            "mean specificity": 0.64025,
            "mean f1 score": 0.634
        },
        "valid info": {
            "accuracy": 0.5711670480523059,
            "0": {
                "Precision": 0.5455,
                "Recall": 0.2866,
                "Specificity": 0.8043,
                "F1 score": 0.3758
            },
            "1": {
                "Precision": 0.5791,
                "Recall": 0.8043,
                "Specificity": 0.2866,
                "F1 score": 0.6734
            },
            "mean precision": 0.5623,
            "mean recall": 0.54545,
            "mean specificity": 0.54545,
            "mean f1 score": 0.5246
        }
    }

 

训练集和测试集的混淆矩阵:

2.4 可视化网页推理

推理是指没有标签,只有图片数据的情况下对数据的预测,这里使用了网页推理

值得注意的是,如果训练了自己的数据集,需要对infer脚本进行更改,如下:

  • 都需要绝对路径,这个是代码自动生成的类别文件,在runs下
  • IMAGE_PATH 是默认展示的demo图片位置

在控制台输入下面命令即可:

streamlit run D:\project\shufflenetV2\infer.py

 

3. 下载

关于本项目代码和数据集、训练结果的下载:

计算机视觉项目:计算机视觉项目:ShufflenetV2模型实现的图像识别项目:甲状腺结节识别资源-CSDN文库

关于Ai 深度学习图像识别、医学图像分割改进系列:AI 改进系列_听风吹等浪起的博客-CSDN博客

神经网络改进完整实战项目:改进系列_听风吹等浪起的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/962392.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【ArcGIS遇上Python】批量提取多波段影像至单个波段

本案例基于ArcGIS python,将landsat影像的7个波段影像数据,批量提取至单个波段。 相关阅读:【ArcGIS微课1000例】0141:提取多波段影像中的单个波段 文章目录 一、数据准备二、效果比对二、python批处理1. 编写python代码2. 运行代码一、数据准备 实验数据及完整的python位…

HTB:Administrator[WriteUP]

目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 将靶机TCP开放端口号提取并保存 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机常用UDP端口进行开放扫描 使用nmap对靶机…

vscode+WSL2(ubuntu22.04)+pytorch+conda+cuda+cudnn安装系列

最近在家过年闲的没事,于是研究起深度学习开发工具链的配置和安装,之前欲与天公试比高,尝试在win上用vscodecuda11.6vs2019的cl编译器搭建cuda c编程环境,最后惨败,沦为笑柄,痛定思痛,这次直接和…

亚博microros小车-原生ubuntu支持系列:17 gmapping

前置依赖 先看下亚博官网的介绍 Gmapping简介 gmapping只适用于单帧二维激光点数小于1440的点,如果单帧激光点数大于1440,那么就会出【[mapping-4] process has died】 这样的问题。 Gmapping是基于滤波SLAM框架的常用开源SLAM算法。 Gmapping基于RBp…

FreeRTOS从入门到精通 第十六章(任务通知)

参考教程:【正点原子】手把手教你学FreeRTOS实时系统_哔哩哔哩_bilibili 一、任务通知简介 1、概述 (1)任务通知顾名思义是用来通知任务的,任务控制块中的结构体成员变量ulNotifiedValue就是这个通知值。 (2&#…

数据结构选讲 (更新中)

参考 smWCDay7 数据结构选讲2 by yyc 。 可能会补充的: AT_cf17_final_j TreeMST 的 F2 Boruvka算法 目录 AT_cf17_final_j Tree MSTP5280 [ZJOI2019] 线段树 AT_cf17_final_j Tree MST link 题意 给定一棵 n n n 个点的树,点有点权 w i w_i wi​&am…

【01】共识机制

BTF共识 拜占庭将军问题 拜占庭将军问题是一个共识问题 起源 Leslie Lamport在论文《The Byzantine Generals Problem》提出拜占庭将军问题。 核心描述 军中可能有叛徒,却要保证进攻一致,由此引申到计算领域,发展成了一种容错理论。随着…

春晚舞台上的人形机器人:科技与文化的奇妙融合

文章目录 人形机器人Unitree H1的“硬核”实力传统文化与现代科技的创新融合网友热议与文化共鸣未来展望:科技与文化的更多可能结语 2025 年央视春晚的舞台,无疑是全球华人目光聚焦的焦点。就在这个盛大的舞台上,一场名为《秧BOT》的创意融合…

.NET Core缓存

目录 缓存的概念 客户端响应缓存 cache-control 服务器端响应缓存 内存缓存(In-memory cache) 用法 GetOrCreateAsync 缓存过期时间策略 缓存的过期时间 解决方法: 两种过期时间策略: 绝对过期时间 滑动过期时间 两…

如何从客观角度批判性阅读分析博客

此文仅以个人博客为例,大量阅读朋友反馈给我的交流让我得知他们所理解我的博客所表达的意思并非我所想表达的,差异或大或小,因人而异。 观点与事实 只有从客观角度反复批判性阅读和分析,才能逐渐清晰观点和事实。 观点不等于事实…

【力扣】49.字母异位词分组

AC截图 题目 思路 由于互为字母异位词的两个字符串包含的字母相同,因此对两个字符串分别进行排序之后得到的字符串一定是相同的,故可以将排序之后的字符串作为哈希表的键。 可以遍历strs,将其中每一个str排序,然后用unodered_ma…

【4Day创客实践入门教程】Day4 迈向高手之路——进一步学习!

Day4 迈向高手之路——进一步学习! 目录 Day4 迈向高手之路——进一步学习!更多的开发板外壳制作 Day0 创想启程——课程与项目预览Day1 工具箱构建——开发环境的构建Day2 探秘微控制器——单片机与MicroPython初步Day3 实战演练——桌面迷你番茄钟Day4…

什么是线性化PDF?

线性化PDF是一种特殊的PDF文件组织方式。 总体而言,PDF是一种极为优雅且设计精良的格式。PDF由大量PDF对象构成,这些对象用于创建页面。相关信息存储在一棵二叉树中,该二叉树同时记录文件中每个对象的位置。因此,打开文件时只需加…

向下调整算法(详解)c++

算法流程: 与⽗结点的权值作⽐较,如果⽐它⼤,就与⽗亲交换; 交换完之后,重复 1 操作,直到⽐⽗亲⼩,或者换到根节点的位置 大家可能会有点疑惑,这个是大根堆,22是怎么跑到…

unity学习25:用 transform 进行旋转和移动,简单的太阳地球月亮模型,以及父子级关系

目录 备注内容 1游戏物体的父子级关系 1.1 父子物体 1.2 坐标关系 1.3 父子物体实际是用 每个gameobject的tranform来关联的 2 获取gameObject的静态数据 2.1 具体命令 2.2 具体代码 2.3 输出结果 3 获取gameObject 的方向 3.1 游戏里默认的3个方向 3.2 获取方向代…

C基础算法与实现

前言 通过业务侧输入需求,使用代码完成。 1.偶数立方和 编写函数求1~100中奇数的平方与偶数的立方的和 1.1代码实现结果 1.2源码示例 #include <stdio.h>// 计算1到100中奇数的平方与偶数的立方的和 int calculateSum() {int sum 0;// 遍历1到100之间的所有数字for (…

基于SSM实现的乡村振兴文化平台系统功能实现十八

一、前言介绍&#xff1a; 1.1 项目摘要 农耕文明是广大群众在几千年的农业生产生活中智慧的结晶&#xff0c;不仅是乡土文化的核心和精髓&#xff0c;还是中华文明的起源和基因。因此&#xff0c;传承和发扬优秀乡村文化&#xff0c;是传承农耕文明的必然要求。 文化振兴是乡…

如何让一个用户具备创建审批流程的权限

最近碰到一个问题&#xff0c;两个sandbox&#xff0c;照理用户的权限应该是一样的&#xff0c;结果开发环境里面我可以左右的做各种管理工作&#xff0c;但是使用change set上传后&#xff0c;另一个环境的同一个用户&#xff0c;没有相对于的权限&#xff0c;权限不足。 当时…

实现B-树

一、概述 1.历史 B树&#xff08;B-Tree&#xff09;结构是一种高效存储和查询数据的方法&#xff0c;它的历史可以追溯到1970年代早期。B树的发明人Rudolf Bayer和Edward M. McCreight分别发表了一篇论文介绍了B树。这篇论文是1972年发表于《ACM Transactions on Database S…

解锁维特比算法:探寻复杂系统的最优解密码

引言 在复杂的技术世界中&#xff0c;维特比算法以其独特的魅力和广泛的应用&#xff0c;成为通信、自然语言处理、生物信息学等领域的关键技术。今天&#xff0c;让我们一同深入探索维特比算法的奥秘。 一、维特比算法的诞生背景 维特比算法由安德鲁・维特比在 1967 年提出…