【Block总结】OutlookAttention注意力,捕捉细节和局部特征|即插即用

论文信息

  • 标题: VOLO: Vision Outlooker for Visual Recognition
  • 作者: Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, Shuicheng Yan
  • 代码链接: https://github.com/sail-sg/volo
  • 论文链接: https://arxiv.org/pdf/2106.13112
    在这里插入图片描述

创新点

  • 前景注意力机制: VOLO引入了一种称为“outlook attention”的新型注意力机制,能够动态地在输入图像上进行局部特征聚合。这种机制专注于编码细粒度特征,而不是传统自注意力机制所关注的全局依赖性,从而提高了模型在视觉识别任务中的表现。
  • 高效的特征编码: VOLO通过滑动窗口的方式进行局部特征聚合,打破了自注意力机制在计算复杂度上的瓶颈,使得模型在内存使用上更加高效。
    在这里插入图片描述

方法

  • 模型架构: VOLO的架构相对简单,主要包括以下几个部分:
    • Outlook Attention: 该机制通过局部窗口内的相似度计算生成注意力权重,有效地聚合细粒度特征。
    • 多层感知机(MLP): 用于进一步处理和整合特征,增强模型的表达能力。

实验结果

  • ImageNet-1K分类任务: VOLO在该任务中实现了87.1%的top-1准确率,成为首个在该数据集上超过87%准确率的模型,且未使用任何额外训练数据。与其他模型相比,VOLO在参数量仅为296M的情况下,表现出色,显示出其高效性。
  • 下游任务表现: VOLO在CityScapes和ADE20K等下游任务中也表现优异,分别取得了84.3%和54.3%的mIoU(平均交并比)得分,证明了其良好的迁移学习能力。

总结

VOLO通过引入前景注意力机制和高效的特征编码方法,显著提升了视觉识别模型的性能,尤其是在细粒度特征的处理上。该模型在多个标准数据集上取得了优异的成绩,为未来的视觉识别研究提供了新的思路和方向。VOLO的设计理念和实验结果表明,基于注意力的模型在视觉识别领域具有广泛的应用潜力。

代码

import torch
import torch.nn as nn
import math
import torch.nn.functional as F

class OutlookAttention(nn.Module):
    """
    Implementation of outlook attention
    --dim: hidden dim
    --num_heads: number of heads
    --kernel_size: kernel size in each window for outlook attention
    return: token features after outlook attention
    """

    def __init__(self, dim, num_heads, kernel_size=3, padding=1, stride=1,
                 qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        head_dim = dim // num_heads
        self.num_heads = num_heads
        self.kernel_size = kernel_size
        self.padding = padding
        self.stride = stride
        self.scale = qk_scale or head_dim**-0.5

        self.v = nn.Linear(dim, dim, bias=qkv_bias)
        self.attn = nn.Linear(dim, kernel_size**4 * num_heads)

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.unfold = nn.Unfold(kernel_size=kernel_size, padding=padding, stride=stride)
        self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True)

    def forward(self, x):
        B, H, W, C = x.shape

        v = self.v(x).permute(0, 3, 1, 2)  # B, C, H, W

        h, w = math.ceil(H / self.stride), math.ceil(W / self.stride)
        v = self.unfold(v).reshape(B, self.num_heads, C // self.num_heads,
                                   self.kernel_size * self.kernel_size,
                                   h * w).permute(0, 1, 4, 3, 2)  # B,H,N,kxk,C/H

        attn = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
        attn = self.attn(attn).reshape(
            B, h * w, self.num_heads, self.kernel_size * self.kernel_size,
            self.kernel_size * self.kernel_size).permute(0, 2, 1, 3, 4)  # B,H,N,kxk,kxk
        attn = attn * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).permute(0, 1, 4, 3, 2).reshape(
            B, C * self.kernel_size * self.kernel_size, h * w)
        x = F.fold(x, output_size=(H, W), kernel_size=self.kernel_size,
                   padding=self.padding, stride=self.stride)

        x = self.proj(x.permute(0, 2, 3, 1))
        x = self.proj_drop(x)

        return x



if __name__ == "__main__":
    # 如果GPU可用,将模块移动到 GPU
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # 输入张量 (batch_size, height, width,channels)
    x = torch.randn(1,40,40,32).to(device)
    # 初始化 OutlookAttention 模块
    dim=32
    block = OutlookAttention(dim,8)
    print(block)
    block = block.to(device)
    # 前向传播
    output = block(x)
    print("输入:", x.shape)
    print("输出:", output.shape)

输出结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/962063.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux Samba 低版本漏洞(远程控制)复现与剖析

目录 前言 漏洞介绍 漏洞原理 产生条件 漏洞影响 防御措施 复现过程 结语 前言 在网络安全的复杂生态中,系统漏洞的探索与防范始终是保障数字世界安全稳定运行的关键所在。Linux Samba 作为一款在网络共享服务领域应用极为广泛的软件,其低版本中…

hive:基本数据类型,关于表和列语法

基本数据类型 Hive 的数据类型分为基本数据类型和复杂数据类型 加粗的是常用数据类型 BOOLEAN出现ture和false外的其他值会变成NULL值 没有number,decimal类似number 如果输入的数据不符合数据类型, 映射时会变成NULL, 但是数据本身并没有被修改 创建表 创建表的本质其实就是在…

Elasticsearch的开发工具(Dev Tools)

目录 说明1. **Console**2. **Search Profiler**3. **Grok Debugger**4. **Painless Lab**总结 说明 Elasticsearch的开发工具(Dev Tools)在Kibana中提供了多种功能强大的工具,用于调试、优化和测试Elasticsearch查询和脚本。以下是关于Cons…

Qt中Widget及其子类的相对位置移动

Qt中Widget及其子类的相对位置移动 最后更新日期:2025.01.25 下面让我们开始今天的主题… 一、开启篇 提出问题:请看上图,我们想要实现的效果是控件黄色的Widge(m_infobarWidget)t随着可视化窗口(m_glWidge…

【Unity3D】实现横版2D游戏——攀爬绳索(简易版)

目录 GeneRope.cs 场景绳索生成类 HeroColliderController.cs 控制角色与单向平台是否忽略碰撞 HeroClampController.cs 控制角色攀爬 OnTriggerEnter2D方法 OnTriggerStay2D方法 OnTriggerExit2D方法 Update方法 开始攀爬 结束攀爬 Sensor_HeroKnight.cs 角色触发器…

docker搭建redis集群(三主三从)

本篇文章不包含理论解释,直接开始集群(三主三从)搭建 环境 centos7 docker 26.1.4 redis latest (7.4.2) 服务器搭建以及环境配置 请查看本系列前几篇博客 默认已搭建好三个虚拟机并安装配置好docker 相关博客&#xf…

物联网智能项目之——智能家居项目的实现!

成长路上不孤单😊😊😊😊😊😊 【14后😊///计算机爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于物联网智能项目之——智能家居项目…

Deep Seek R1本地化部署

目录 说明 一、下载ollama 二、在ollama官网下载模型 三、使用 后记 说明 操作系统:win10 使用工具:ollama 一、下载ollama 从官网下载ollama: ollama默认安装在C盘,具体位置为C:\Users\用户名\AppData\Local\Programs\O…

跟李沐学AI:视频生成类论文精读(Movie Gen、HunyuanVideo)

Movie Gen:A Cast of Media Foundation Models 简介 Movie Gen是Meta公司提出的一系列内容生成模型,包含了 3.2.1 预训练数据 Movie Gen采用大约 100M 的视频-文本对和 1B 的图片-文本对进行预训练。 图片-文本对的预训练流程与Meta提出的 Emu: Enh…

Java---入门基础篇(上)

前言 本片文章主要讲了刚学Java的一些基础内容,例如注释,标识符,数据类型和变量,运算符,还有逻辑控制等,记录的很详细,带你从简单的知识点再到练习题.如果学习了c语言的小伙伴会发现,这篇文章的内容和c语言大致相同. 而在下一篇文章里,我会讲解方法和数组的使用,也是Java中基础…

3、C#基于.net framework的应用开发实战编程 - 实现(三、三) - 编程手把手系列文章...

三、 实现; 三.三、编写应用程序; 此文主要是实现应用的主要编码工作。 1、 分层; 此例子主要分为UI、Helper、DAL等层。UI负责便签的界面显示;Helper主要是链接UI和数据库操作的中间层;DAL为对数据库的操…

Go学习:类型转换需注意的点 以及 类型别名

目录 1. 类型转换 2. 类型别名 1. 类型转换 在从前的学习中,知道布尔bool类型变量只有两种值true或false,C/C、Python、JAVA等编程语言中,如果将布尔类型bool变量转换为整型int变量,通常采用 “0为假,非0为真”的方…

爬虫基础(四)线程 和 进程 及相关知识点

目录 一、线程和进程 (1)进程 (2)线程 (3)区别 二、串行、并发、并行 (1)串行 (2)并行 (3)并发 三、爬虫中的线程和进程 &am…

V103开发笔记1-20250113

2025-01-13 一、应用方向分析 应用项目: PCBFLY无人机项目(包括飞控和手持遥控器); 分析移植项目,应用外设资源包括: GPIO, PWM,USART,GPIO模拟I2C/SPI, ADC,DMA,USB等; 二、移植项目的基本…

AAPM:基于大型语言模型代理的资产定价模型,夏普比率提高9.6%

“AAPM: Large Language Model Agent-based Asset Pricing Models” 论文地址:https://arxiv.org/pdf/2409.17266v1 Github地址:https://github.com/chengjunyan1/AAPM 摘要 这篇文章介绍了一种利用LLM代理的资产定价模型(AAPM)…

新版231普通阿里滑块 自动化和逆向实现 分析

声明: 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关! 逆向过程 补环境逆向 部分补环境 …

Autosar-Os是怎么运行的?(时间保护)

写在前面: 入行一段时间了,基于个人理解整理一些东西,如有错误,欢迎各位大佬评论区指正!!! 1.功能概述 AUTOSAR OS 的四大可定制类型凸显了时间保护(Timing Protection)…

vue框架技术相关概述以及前端框架整合

vue框架技术概述及前端框架整合 1 node.js 介绍:什么是node.js Node.js就是运行在服务端的JavaScript。 Node.js是一个事件驱动I/O服务端JavaScript环境,基于Google的V8引擎。 作用 1 运行java需要安装JDK,而Node.js是JavaScript的运行环…

玩转大语言模型——使用langchain和Ollama本地部署大语言模型

系列文章目录 玩转大语言模型——使用langchain和Ollama本地部署大语言模型 玩转大语言模型——ollama导入huggingface下载的模型 玩转大语言模型——langchain调用ollama视觉多模态语言模型 玩转大语言模型——使用GraphRAGOllama构建知识图谱 玩转大语言模型——完美解决Gra…

亚博microros小车-原生ubuntu支持系列:15 激光雷达巡逻

一 TF坐标转换 ros2 -5.1 坐标变化工具介绍_ros怎么发布坐标变化-CSDN博客 ros2笔记-5.3 C中地图坐标系变换_c变换坐标系-CSDN博客 header:stamp:sec: 1737893911nanosec: 912000000frame_id: odom_frame child_frame_id: base_footprint pose:pose:position:x: 0.053831271…