2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文

模型设计思路与创新点:

建模的时候应该先确定我们需要建立什么类的模型?优化类还是统计类?这个题需要大量的数据分析,因此我们可以建立一个统计学模型。

统计学建模思路:观察规律,建立模型,参数估计,显著度检验,置信度检验等。

这个题最核心的要求在于旅游模型的可持续性:既要对环境友好,又要对经济效益友好。

于是我想到可以使用SIR传染病模型最后趋于的稳态,和Logistic阻滞增长模型种群处于K/2的时候增速最快的节点来表征这个可持续性。

SIR传染病模型有三个状态变量,Logistic阻滞增长模型有一个状态变量,将两个结合,交互就可以得到一个新的微分方程组,有四个状态变量N(t),S(t),I(t),R(t),这是这篇论文最大的创新。N(t):时间 t 时的游客数量,S(t):未受影响的居民数量,I(t):当前正受到旅游负面影响的居民数量,R(t):已适应或不再受到旅游负面影响困扰的居民数量。

题目中提到:游客多了本地居民就会不高兴,所以我们用本地居民的抵抗人数来量化游客过多的负面效应。

两个模型怎么交互呢?我们这样设计:

W(t)  是游客活动量,用当地市场交通量来表示(网上有数据可以查得到)

C(t)  是基础设施的使用量,假设它正比于游客量,正比系数是2023年的全球碳排放量中旅游业排放的比例。

下面是模型的参数:

r表示游客增长率

K表示生态承载上限

δ表示居民的抵触情绪或负面评价对游客数量的“抑制效应”系数

β为传播率(正比于游客对居民压力的影响率)

γ为恢复或适应速率

σ表示生态效应对居民的正向或负向反馈作用系数

模型实现的效果:

我们用游客数量衡量旅游的经济效益,这是显然的:

(第一个方程)当游客数量N太多会降低游客的增速,被旅游业困扰的原住民数量增多也会降低游客的增速(这一点是我们的创新)

(第二个方程)被困扰的原住民的增速负相关于有不被困扰的原住民的数量

(第三个方程)被困扰的原住民的增速不仅被其它原住民和游客影响,还被生态效益E(t)所影响(这一点也是我们的创新)

(第四个方程)原住民会逐渐的习惯被困扰的状态,变成不被困扰的原住民

接下来我们建模生态效益:

(第五个方程)

总生态效益E(t)被游客人数N(t),交通量W(t)(交通量正像关于二氧化碳排放量),公共设施使用量C(t),我们假设每个人使用的设施是一个比值,使用2023年旅游业的碳排放量对所有行业占比来代替。

为了简化模型,考虑到几年来交通量变化不大,使用一个关于时间t的二次多项式来表示。

这是一个统计学模型,模型建立以后,我们可以用模型来表示回归曲线,题目中要求我们进行模型的稳定性分析,我们可以对参数进行参数估计和显著度检验,用参数的显著性作为模型的稳定性。

获取数据与回归:

设立完模型以后,我们需要收集数据,对数据拟合我们的模型,看看我们的模型拟合效果如何,显著度水平如何,如果显著度水平高,说明变量是起到作用的;如果拟合效果好,则可以用来预测。

数据我们通过2023年的阿拉斯加州旅游业报告和朱诺市的旅游业调研报告获取的,由于报告获取过程中没有原始数据,故我们根据报告中的相关参数获取了两种数据。第一种数据通过期望和正态性假设生成;第二种数据通过对原始的单条时间序列数据进行滑动窗口得到时间序列样本集。

报告原链接:

https://juneau.org/wp-content/uploads/2023/12/CBJ-Tourism-Survey-2023-Report-12.11.23.pdf

 a_visitor_report_7.pdf (alaska.gov)

 sustainabletravel.org

这是数据来源的一张采集截图:

后面的内容只在第一种数据上介绍,对于第二种数据我们只构建了数据集,还没来得及做回归分析。

模型结果展示:

下面简单展示我们模型的结果(线性回归):

N(t)vs.t曲线大体上呈现一个缓慢上升的趋势,因为很多人会涌入景点。

S(t)vs.t):随时间有下降,说明游客涌入时,当地居民很快就会受到影响。

 I(t)vs.t):被影响的居民先增多再减少

R(t)vs.t:理论上上升,因为更多居民逐渐适应游客的涌入。

C(t)vs.t:若交通市场人流总量随时间总体增加,则显现出增长态势。

W(t)vs.t:由于我们定义,只要N(t)随时间变化,W(t)的变化趋势也相似。

回归结果与显著度分析:

最后是我们的回归结果和显著度分析:

变量

α

β

Std.Error(β

)

t值

p值

结论

N(t)

1.60E+06

5400

1400

3.86

0.00012

显著(p<0.01)

S(t)

4.50E+05

250.8

67

3.74

0.00021

显著(p<0.01)

I(t

9.93E+05

2331.6

112

20.78

1.51E69

显著(p<0.01)

R(t)

3.36E+05

2629

120

21.92

4.77E75

显著(p<0.01)

C(t)

1.48E+06

2200

23

95

1.00E300

显著(p<0.01)

W(t)

1.20E+05

1100

12

91

3.00E290

显著(p<0.01)

可以看到:对任何一个状态变量,模型都是显著的,说明模型变量选择还是合理的。

我们设立的模型思路清晰且简洁,具有创新性和专业性,且我们已经写好了一篇成品论文,附带了两种数据集和模型的回归代码,借鉴我们的论文会让您的论文更出彩。下面附上我们的成品论文的目录。更多内容请点击如下链接:

美赛B题成品论文-基于SIR与Logistic模型- 首发,可直接用于论文

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/960190.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自由学习记录(32)

文件里找到切换颜色空间 fgui中的 颜色空间是一种总体使用前的设定 颜色空间&#xff0c;和半透明混合产生的效果有差异&#xff0c;这种问题一般可以产生联系 动效就是在fgui里可以编辑好&#xff0c;然后在unity中也准备了对应的调用手段&#xff0c;可以详细的使用每一个具…

【2025AI发展预测】2.2025的风口与发展,我们如何主动拥抱这一浪潮

个人主页&#xff1a;Icomi 大家好我是一颗米&#xff0c;本系列文章包含我个人的一些思考见解&#xff0c;以及在网上看到的相关资讯&#xff0c;结合本人的认识&#xff0c;在那基础上进行加工输出&#xff0c;希望能帮助到各位&#xff0c;若您对本系列感兴趣&#xff0c;欢…

操作系统(Linux Kernel 0.11Linux Kernel 0.12)解读整理——内核初始化(main init)之硬盘初始化

前言 对硬盘和软盘块设备上数据的读写操作是通过中断处理程序进行的。内核每次读写的数据量以一个逻辑块(1024 字节)为单位&#xff0c;而块设备控制器则是以扇区(512字节)为单位访问块设备。在处理过程中&#xff0c;内核使用了读写请求项等待队列来顺序地缓冲一次读写多个逻…

利用机器学习创建基于位置的推荐程序

推荐系统被广泛应用于不同的应用程序中&#xff0c;用于预测用户对产品或服务的偏好或评价。在过去的几分钟或几小时里&#xff0c;你很可能在网上遇到过或与某种类型的推荐系统进行过互动。这些推荐系统有不同的类型&#xff0c;其中最突出的包括基于内容的过滤和协作过滤。在…

【AI论文】Video-MMMU:评估从多学科专业视频中获取知识的能力

摘要&#xff1a;人类通过三个认知阶段获取知识&#xff1a;感知信息、理解知识以及运用知识解决新问题。视频作为这一学习过程的有效媒介&#xff0c;促进了这些认知阶段的逐步推进。然而&#xff0c;现有的视频基准测试未能系统地评估大型多模态模型&#xff08;LMMs&#xf…

【C++高并发服务器WebServer】-9:多线程开发

本文目录 一、线程概述1.1 线程和进程的区别1.2 线程之间共享和非共享资源1.3 NPTL 二、线程操作2.1 pthread_create2.2 pthread_exit2.3 pthread_join2.4 pthread_detach2.5 patch_cancel2.6 pthread_attr 三、实战demo四、线程同步五、死锁六、读写锁七、生产消费者模型 一、…

C语言学习强化

前言 数据的逻辑结构包括&#xff1a; 常见数据结构&#xff1a; 线性结构&#xff1a;数组、链表、队列、栈 树形结构&#xff1a;树、堆 图形结构&#xff1a;图 一、链表 链表是物理位置不连续&#xff0c;逻辑位置连续 链表的特点&#xff1a; 1.链表没有固定的长度…

【C++探索之路】STL---string

走进C的世界&#xff0c;也意味着我们对编程世界的认知达到另一个维度&#xff0c;如果你学习过C语言&#xff0c;那你绝对会有不一般的收获&#xff0c;感受到C所带来的码云风暴~ ---------------------------------------begin--------------------------------------- 什么是…

【WebRTC - STUN/TURN服务 - COTURN配置】

在WebRTC中&#xff0c;对于通信的两端不在同一个局域网的情况下&#xff0c;通信两端往往无法P2P直接连接&#xff0c;需要一个TURN中继服务&#xff0c;而中继服务可以选用 COTURN 构建。 注&#xff1a;COTURN 是一个开源的 TURN&#xff08;Traversal Using Relays around…

React 前端框架实战教程

&#x1f4dd;个人主页&#x1f339;&#xff1a;一ge科研小菜鸡-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 引言 React 是由 Facebook 开发的前端 JavaScript 库&#xff0c;旨在构建高效、灵活的用户界面&#xff0c;尤其适用于单页应用…

MiniMax-01中Lightning Attention的由来(线性注意力进化史)

目录 引言原始注意力线性注意力因果模型存在的问题累加求和操作的限制Lightning AttentionLightning Attention-1Lightning Attention-2 备注 引言 MiniMax-01: Scaling Foundation Models with Lightning Attention表明自己是第一个将线性注意力应用到如此大规模的模型&#…

互联网医院成品|互联网医院软件源码

互联网医院系统带来的好处是显而易见的&#xff0c;其通过先进的互联网技术为医疗行业带来了巨大的变革。以下将从多个方面详细阐述其带来的益处。 一、便捷的医疗服务 互联网医院系统为患者提供了更为便捷的医疗服务。患者无需再亲自前往医院&#xff0c;只需通过电脑、手机等…

unity学习20:time相关基础 Time.time 和 Time.deltaTime

目录 1 unity里的几种基本时间 1.1 time 相关测试脚本 1.2 游戏开始到现在所用的时间 Time.time 1.3 时间缩放值 Time.timeScale 1.4 固定时间间隔 Time.fixedDeltaTime 1.5 两次响应时间之间的间隔&#xff1a;Time.deltaTime 1.6 对应测试代码 1.7 需要关注的2个基本…

Centos7系统php8编译安装ImageMagick/Imagick扩展教程整理

Centos7系统php8编译安装ImageMagick/Imagick扩展教程整理 安装php8安装ImageMagick1、下载ImageMagick2、解压并安装3、查看是否安装成功 安装imagick扩展包 安装php8 点我安装php8 安装ImageMagick 1、下载ImageMagick wget https://www.imagemagick.org/download/ImageMa…

RabbitMQ模块新增消息转换器

文章目录 1.目录结构2.代码1.pom.xml 排除logging2.RabbitMQConfig.java3.RabbitMQAutoConfiguration.java 1.目录结构 2.代码 1.pom.xml 排除logging <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/PO…

Linux——网络基础(1)

文章目录 目录 文章目录 前言 一、文件传输协议 应用层 传输层 网络层 数据链路层 数据接收与解封装 主机与网卡 数据传输过程示意 二、IP和MAC地址 定义与性质 地址格式 分配方式 作用范围 可见性与可获取性 生活例子 定义 用途 特点 联系 四、TCP和UDP协…

SpringBoot+Electron教务管理系统 附带详细运行指导视频

文章目录 一、项目演示二、项目介绍三、运行截图四、主要代码1.查询课程表代码2.保存学生信息代码3.用户登录代码 一、项目演示 项目演示地址&#xff1a; 视频地址 二、项目介绍 项目描述&#xff1a;这是一个基于SpringBootElectron框架开发的教务管理系统。首先&#xff…

有限元分析学习——Anasys Workbanch第一阶段笔记(15)接触间隙处理与赫兹接触

目录 0 序言 1 接触的间隙处理 1.1 结果对比 1.2 处理方法 2 赫兹接触 0 序言 本章主要介绍间隙出现时的三种解决方法&#xff0c;齿轮点蚀/表面剥落涉及的赫兹接触的一些理论知识。 1 接触的间隙处理 在实际产品过程中&#xff0c;很多时候由于设计问题&#xff0c;原本…

go单元测试和基准测试

1、单元测试和基准测试 单元测试和基准测试代码开发中的重要环节&#xff0c;良好的单元测试和基准测试&#xff0c;能提升开发质量&#xff0c;对整体开发有非常重要的重要&#xff0c;下面介绍单元测试和基准测试的写法。 2、单元测试和基准测试写法 以排序基本排序算法&a…

自由窗口边框阴影描绘方案汇总-社群讨论学习

背景&#xff1a; 针对很多厂商的自由窗口都有内外阴影效果&#xff0c;针对这样一个需求其实不仔细看可能都看不出来&#xff0c;不过确实也是存在的这种阴影&#xff0c;这里我搞个明显一些的给大家看看&#xff1a; 针对这样一个需求&#xff0c;在我们vip学员群里进行了相…