自定义命令执行器:C++中命令封装的深度探索(C/C++实现)

在现代软件开发中,执行系统命令是一项常见的需求,无论是自动化脚本、系统管理工具,还是需要调用外部程序的复杂应用程序,都离不开对系统命令的调用。然而,直接使用系统调用(如 execve)虽然简单,但存在诸多问题,例如安全性不足、灵活性差以及可维护性低等。为了克服这些问题,我们可以通过封装命令执行逻辑,设计一个自定义的命令执行器。本文将深入探讨如何在 C++ 中实现一个安全、灵活且易于管理的命令执行器。

一、背景与动机

在许多应用程序中,执行系统命令是一项常见需求。例如,自动化脚本、系统管理工具或需要调用外部程序的复杂应用程序。然而,直接使用系统调用(如 execve)存在以下问题:

安全性问题:直接拼接命令字符串可能导致命令注入攻击。
灵活性不足:系统调用通常需要手动管理参数和环境变量,容易出错。
可维护性差:直接调用系统调用的代码通常难以阅读和维护。
为了解决这些问题,我们设计了一个自定义的命令执行器包装器,通过封装命令执行逻辑,提供更安全、灵活且易于管理的接口。

二、设计与实现

1. 命令执行器类的设计

命令执行器的核心是一个 command 类,它封装了命令名称、参数列表和环境变量。以下是 command 类的主要设计:
类定义

class command
{
public:
    command(const std::string cmd, const std::vector<std::string>& arguments, const environ_map& envs = environ_map());
    command(const command&) = default;
    command(command&&) = default;

    command& operator=(const command&) = default;
    command& operator=(command&&) = default;

    ~command() = default;

    void exec();

private:
    std::string m_cmd;
    std::vector<std::string> m_arguments;
    environ_map m_envs;
};

构造函数
构造函数接受命令名称、参数列表和环境变量。其中,环境变量通过 environ_map 类型传递,这是一个自定义的环境变量映射类,支持从当前进程环境变量初始化。
执行逻辑
exec() 方法是命令执行的核心。它使用 execve 系统调用执行命令,同时处理参数和环境变量的转换。为了安全地管理动态分配的内存,我们使用 std::shared_ptr 来管理参数数组。

2. 参数和环境变量的处理

为了将参数列表和环境变量转换为 execve 所需的格式,我们设计了以下辅助函数:
参数转换

std::shared_ptr<char*> to_argv(const std::string& cmd, const std::vector<std::string>& vec)
{
    char **argv = new char*[vec.size() + 2];
    argv[0] = ::strdup(cmd.c_str());
    for(size_t i = 0 ; i < vec.size(); ++i)
        argv[i+1] = ::strdup(vec[i].c_str());

    argv[vec.size()+1] = nullptr;

    return std::shared_ptr<char*>(argv, argv_deleter);
}

环境变量转换
environ_map 类提供了一个 raw() 方法,将环境变量映射转换为 execve 所需的格式。它使用 动态分配内存,并通过自定义的 raw_environ_holder 类管理内存生命周期。

3. 环境变量管理

environ_map 类是一个封装了环境变量的映射类,支持从当前进程环境变量初始化,并提供安全的内存管理机制。以下是其主要实现:
环境变量映射

class environ_map : public std::map<std::string, std::string>
{
public:
    environ_map() = default;
    environ_map(const std::map<std::string, std::string>& map) : std::map<std::string, std::string>(map) {};
    environ_map(const environ_map&) = default;
    raw_environ_holder raw() const;

    static environ_map get_for_current_process();
};

从当前进程环境变量初始化

environ_map environ_map::get_for_current_process()
{
    environ_map result;

    int i = 0;
    while(environ[i])
    {
        std::string str(environ[i++]);
        size_t indx = str.find('=');
        if(indx == std::string::npos)
            throw std::runtime_error("Failed to parse env");

        result[str.substr(0, indx)] = str.substr(indx +1);
    }

    return result;
}

三、自定义命令执行器的包装器:实现与应用(C/C++实现)

展示如何使用自定义的命令执行器:
cpp复制

#include "command.h"
#include "environ_map.h"

class command
{
public:
    command(const std::string cmd, const std::vector<std::string>& arguments, const environ_map& envs = environ_map());
    command(const command&) = default;
    command(command&&) = default;

    command& operator=(const command&) = default;
    command& operator=(command&&) = default;

    ~command() = default;

    void exec();

private:
    std::string m_cmd;
    std::vector<std::string> m_arguments;
    environ_map m_envs;
};

...
class raw_environ_holder
{
public:
    raw_environ_holder() = delete;
    raw_environ_holder(const raw_environ_holder&) = delete;
    raw_environ_holder(raw_environ_holder&&);

    raw_environ_holder& operator=(const raw_environ_holder&) = delete;
    raw_environ_holder& operator=(raw_environ_holder&&);

    ~raw_environ_holder();

    operator char**() { return ppenv;};

private:
    friend class environ_map;

    explicit raw_environ_holder(char** ppenv) : ppenv(ppenv){};

    void destroy();

    char** ppenv;
};


class environ_map : public std::map<std::string, std::string>
{
public:
    environ_map() = default;
    environ_map(const std::map<std::string, std::string>& map) : std::map<std::string, std::string>(map) {};
    environ_map(const environ_map&) = default;
    raw_environ_holder raw() const;

    static environ_map get_for_current_process();
};

...
int main()
{
    // 获取当前进程的环境变量
    environ_map m = environ_map::get_for_current_process();
    for(const auto& p: m)
    {
        std::cout << p.first << "=" << p.second << std::endl;
    }

    // 创建并执行命令
    command cmd("/bin/ls", std::vector<std::string>());
    cmd.exec();
}

我们首先获取当前进程的环境变量,然后创建一个 command 对象来执行 /bin/ls 命令。通过封装命令执行逻辑,代码更加清晰且易于维护。

If you need the complete source code, please add the WeChat number (c17865354792)

四、优势与总结

通过实现自定义命令执行器,我们可以更加灵活和安全地执行系统命令。上述实现不仅支持环境变量的设置和传递多个参数,还能够处理执行过程中的错误,并提供输出捕获的功能。这种封装方式使得命令执行变得更加简洁和易于维护,同时也提高了代码的安全性和可读性。未来,我们可以进一步扩展该执行器,添加更多的功能,如异步执行、超时控制等,以满足更多复杂的需求。

Welcome to follow WeChat official account【程序猿编码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/959627.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯之c++入门(一)【第一个c++程序】

目录 前言一、第⼀个C程序1.1 基础程序1.2 main函数1.3 字符串1.4 头文件1.5 cin 和 cout 初识1.6 名字空间1.7 注释 二、四道简单习题&#xff08;点击跳转链接&#xff09;练习1&#xff1a;Hello,World!练习2&#xff1a;打印飞机练习3&#xff1a;第⼆个整数练习4&#xff…

【背包问题 】01背包

目录 一&#xff0c;01背包问题详解 问题描述&#xff1a; 问题分析&#xff1a; 代码&#xff1a; 空间优化&#xff1a; 二&#xff0c;典例 1&#xff0c;分割等和子集 题目解析&#xff1a; 算法解析&#xff1a; 代码&#xff1a; 空间优化&#xff1a; 2&am…

81,【5】BUUCTF WEB [b01lers2020]Life on Mars

进入靶场 怎莫颠颠的&#xff0c;一下子就想到展博了 先把左边的挨个点一遍 在最后一个有点收获 不过也没其他收获了 这种进去给个正常网页的题目&#xff0c;基本都靠url获取信息了 抓包看看有没有其他信息 竟然没有任何信息 自闭了 看别人的wp去咯 为什么别人抓到的包里…

80,【4】BUUCTF WEB [SUCTF 2018]MultiSQL

53&#xff0c;【3】BUUCTF WEB october 2019 Twice SQLinjection-CSDN博客 上面这个链接是我第一次接触二次注入 这道题也涉及了 对二次注入不熟悉的可以看看 BUUCTF出了点问题&#xff0c;打不开&#xff0c;以下面这两篇wp作为学习对象 [SUCTF 2018]MultiSQL-CSDN博客 …

Vue 响应式渲染 - 指令

Vue 渐进式JavaScript 框架 基于Vue2的学习笔记 - Vue 响应式渲染 - 指令 目录 指令 介绍 缩写 指令示例 总结 指令 介绍 指令&#xff1a;是指带有v-前缀的特殊属性 v-bind 动态绑定属性 v-if 动态创建/删除 v-show 动态显示/隐藏 v-on:click 绑定事件 v-for 遍历…

扣子平台音频功能:让声音也能“智能”起来

在数字化时代&#xff0c;音频内容的重要性不言而喻。无论是在线课程、有声读物&#xff0c;还是各种多媒体应用&#xff0c;音频都是传递信息、增强体验的关键元素。扣子平台的音频功能&#xff0c;为开发者和内容创作者提供了一个强大而灵活的工具&#xff0c;让音频的使用和…

python3+TensorFlow 2.x(三)手写数字识别

目录 代码实现 模型解析&#xff1a; 1、加载 MNIST 数据集&#xff1a; 2、数据预处理&#xff1a; 3、构建神经网络模型&#xff1a; 4、编译模型&#xff1a; 5、训练模型&#xff1a; 6、评估模型&#xff1a; 7、预测和可视化结果&#xff1a; 输出结果&#xff…

LKT4304新一代算法移植加密芯片,守护 物联网设备和云服务安全

凌科芯安作为一家在加密芯片领域深耕18年的企业&#xff0c;主推的LKT4304系列加密芯片集成了身份认证、算法下载、数据保护和完整性校验等多方面安全防护功能&#xff0c;可以为客户的产品提供一站式解决方案&#xff0c;并且在调试和使用过程提供全程技术支持&#xff0c;针对…

js/ts数值计算精度丢失问题及解决方案

文章目录 概念及问题问题分析解决方案方案一方案二方案其它——用成熟的库 概念及问题 js中处理浮点数运算时会出现精度丢失。js中整数和浮点数都属于Number数据类型&#xff0c;所有的数字都是以64位浮点数形式存储&#xff0c;整数也是如此。所以打印x.00这样的浮点数的结果…

SSM框架探秘:Spring 整合 SpringMVC 框架

搭建和测试 SpringMVC 的开发环境&#xff1a; web.xml 元素顺序&#xff1a; 在 web.xml 中配置 DisPatcherServlet 前端控制器&#xff1a; <!-- 配置前端控制器 --> <servlet><servlet-name>dispatcherServlet</servlet-name><servlet-class>…

算法11(力扣496)-下一个更大元素I

1、问题 nums1 中数字 x 的 下一个更大元素 是指 x 在 nums2 中对应位置 右侧 的 第一个 比 x 大的元素。 给你两个 没有重复元素 的数组 nums1 和 nums2 &#xff0c;下标从 0 开始计数&#xff0c;其中nums1 是 nums2 的子集。 对于每个 0 < i < nums1.length &#xf…

2024年博客之星主题创作|2024年蓝桥杯与数学建模年度总结与心得

引言 2024年&#xff0c;我在蓝桥杯编程竞赛和数学建模竞赛中投入了大量时间和精力&#xff0c;这两项活动不仅加深了我对算法、数据结构、数学建模方法的理解&#xff0c;还提升了我的解决实际问题的能力。从蓝桥杯的算法挑战到数学建模的复杂应用&#xff0c;我在这些竞赛中…

Spring FatJar写文件到RCE分析

背景 现在生产环境部署 spring boot 项目一般都是将其打包成一个 FatJar&#xff0c;即把所有依赖的第三方 jar 也打包进自身的 app.jar 中&#xff0c;最后以 java -jar app.jar 形式来运行整个项目。 运行时项目的 classpath 包括 app.jar 中的 BOOT-INF/classes 目录和 BO…

初阶数据结构:链表(二)

目录 一、前言 二、带头双向循环链表 1.带头双向循环链表的结构 &#xff08;1)什么是带头&#xff1f; (2)什么是双向呢&#xff1f; &#xff08;3&#xff09;那什么是循环呢&#xff1f; 2.带头双向循环链表的实现 &#xff08;1&#xff09;节点结构 &#xff08;2…

Java Web-Request与Response

在 Java Web 开发中&#xff0c;Request 和 Response 是两个非常重要的对象&#xff0c;用于在客户端和服务器之间进行请求和响应的处理&#xff0c;以下是详细介绍&#xff1a; Request&#xff08;请求对象&#xff09; Request继承体系 在 Java Web 开发中&#xff0c;通…

mysql 学习2 MYSQL数据模型,mysql内部可以创建多个数据库,一个数据库中有多个表;表是真正放数据的地方,关系型数据库 。

在第一章中安装 &#xff0c;启动mysql80 服务后&#xff0c;连接上了mysql&#xff0c;那么就要 使用 SQL语句来 操作mysql数据库了。那么在学习 SQL语言操作 mysql 数据库 之前&#xff0c;要对于 mysql数据模型有一个了解。 MYSQL数据模型 在下图中 客户端 将 SQL语言&…

微信小程序date picker的一些说明

微信小程序的picker是一个功能强大的组件&#xff0c;它可以是一个普通选择器&#xff0c;也可以是多项选择器&#xff0c;也可以是时间、日期、省市区选择器。 官方文档在这里 这里讲一下date picker的用法。 <view class"section"><view class"se…

【学习笔记】计算机网络(二)

第2章 物理层 文章目录 第2章 物理层2.1物理层的基本概念2.2 数据通信的基础知识2.2.1 数据通信系统的模型2.2.2 有关信道的几个基本概念2.2.3 信道的极限容量 2.3物理层下面的传输媒体2.3.1 导引型传输媒体2.3.2 非导引型传输媒体 2.4 信道复用技术2.4.1 频分复用、时分复用和…

总结8..

#include <stdio.h> // 定义结构体表示二叉树节点&#xff0c;包含左右子节点编号 struct node { int l; int r; } tree[100000]; // 全局变量记录二叉树最大深度&#xff0c;初始为0 int ans 0; // 深度优先搜索函数 // pos: 当前节点在数组中的位置&#xff0c…

多智能体中的理论与传统智能体理论有何异同?

多智能体系统与传统单智能体理论在多个方面存在异同&#xff0c;多智能体系统在理论上扩展了单智能体系统的研究范畴&#xff0c;强调智能体之间的交互和协作。随着人工智能、人机智能、人机环境系统智能的发展&#xff0c;多智能体系统在机器人群体、分布式计算、资源管理等领…