[精确算法] 高斯消元法求线性方程组
线性方程组
考虑线性方程组, 已知 A ∈ R n , n , b ∈ R n A\in \mathbb{R}^{n,n},b\in \mathbb{R}^n A∈Rn,n,b∈Rn, 求未知 x ∈ R n x\in \mathbb{R}^n x∈Rn
A
1
,
1
x
1
+
A
1
,
2
x
2
+
⋯
+
A
1
,
n
x
n
=
b
1
,
A_{1,1} x_1 +A_{1,2}x_2+\cdots +A_{1,n} x_n = b_1,
A1,1x1+A1,2x2+⋯+A1,nxn=b1,
A
2
,
1
x
1
+
A
2
,
2
x
2
+
⋯
+
A
2
,
n
x
n
=
b
2
,
A_{2,1} x_1 +A_{2,2}x_2 +\cdots +A_{2,n} x_n = b_2,
A2,1x1+A2,2x2+⋯+A2,nxn=b2,
⋯
\cdots
⋯
A
n
,
1
x
1
+
A
n
,
2
x
2
+
⋯
+
A
n
,
n
x
n
=
b
n
,
A_{n,1} x_1 +A_{n,2}x_2 +\cdots +A_{n,n} x_n = b_n,
An,1x1+An,2x2+⋯+An,nxn=bn,
也可以写为矩阵乘法的形式,
A
x
=
b
Ax=b
Ax=b
化为上三角
-
第 1 轮:
A i , 1 : n = A i , 1 : n − A i , 1 A 1 , 1 A 1 , 1 : n , i = 2 , ⋯ , n A_{i,1:n} = A_{i,1:n}- \frac{A_{i,1}}{A_{1,1}} A_{1,1:n}, i=2,\cdots,n Ai,1:n=Ai,1:n−A1,1Ai,1A1,1:n,i=2,⋯,n -
第 2 轮:
A i , 2 : n = A i , 2 : n − A i , 2 A 2 , 2 A 2 , 2 : n , i = 3 , ⋯ , n A_{i,2:n} = A_{i,2:n}- \frac{A_{i,2}}{A_{2,2}} A_{2,2:n}, i=3,\cdots,n Ai,2:n=Ai,2:n−A2,2Ai,2A2,2:n,i=3,⋯,n
⋯ \cdots ⋯ -
第 k 轮:
A i , k : n = A i , k : n − A i , k A k , k A k , k : n , i = k + 1 , ⋯ , n A_{i,k:n} = A_{i,k:n}- \frac{A_{i,k}}{A_{k,k}} A_{k,k:n}, i=k+1,\cdots,n Ai,k:n=Ai,k:n−Ak,kAi,kAk,k:n,i=k+1,⋯,n -
第n-1 轮
A i , n − 1 : n = A i , n − 1 : n − A i , n − 1 A n − 1 , n − 1 A n , n − 1 : n , i = n A_{i,n-1:n} = A_{i,n-1:n} - \frac{A_{i, n-1}}{A_{n-1,n-1}} A_{n,n-1:n}, i=n Ai,n−1:n=Ai,n−1:n−An−1,n−1Ai,n−1An,n−1:n,i=n
化为对角
-
第 1 轮:
A i , 2 : n = A i , 2 : n − A i , n A n , n A n , 2 : n , i = 1 , ⋯ , n − 1 A_{i,2:n} = A_{i,2:n}- \frac{A_{i,n}}{A_{n,n}} A_{n,2:n}, i=1,\cdots,n-1 Ai,2:n=Ai,2:n−An,nAi,nAn,2:n,i=1,⋯,n−1 -
第 2 轮:
A i , 2 : n − 1 = A i , 2 : n − 1 − A i , n − 1 A n − 1 , n − 1 A n − 1 , 2 : n − 1 , i = 1 , ⋯ , n − 2 A_{i,2:n-1} = A_{i,2:n-1}- \frac{A_{i,n-1}}{A_{n-1,n-1}} A_{n-1,2:n-1}, i=1,\cdots,n-2 Ai,2:n−1=Ai,2:n−1−An−1,n−1Ai,n−1An−1,2:n−1,i=1,⋯,n−2
⋯ \cdots ⋯ -
第 k 轮:
A i , 2 : n − k + 1 = A i , 2 : n − k + 1 − A i , n − k + 1 A n − k + 1 , n − k + 1 A n − k + 1 , 2 : n − k + 1 , i = 1 , ⋯ , n − k + 1 A_{i,2:n-k+1} = A_{i,2:n-k+1}- \frac{A_{i,n-k+1}}{A_{n-k+1,n-k+1}} A_{n-k+1,2:n-k+1}, i=1,\cdots,n-k+1 Ai,2:n−k+1=Ai,2:n−k+1−An−k+1,n−k+1Ai,n−k+1An−k+1,2:n−k+1,i=1,⋯,n−k+1 -
第n-1 轮
A i , 2 = A i , 2 − A i , 2 A 2 , 2 A 2 , 2 , i = 1 A_{i,2} = A_{i,2} - \frac{A_{i, 2}}{A_{2,2}} A_{2,2}, i=1 Ai,2=Ai,2−A2,2Ai,2A2,2,i=1
美化数据格式
using DataFrames
function pm(A,b)
m,n=size(A); z=[]
for i=1:n
z=[z; "a$i"]
end
z=[z; "b"]
println(DataFrame([A b],z))
end
高斯消元法程序
function LEsol(A,b,SHOW=false)
"""
SHOW 默认为 false 不输出解题步骤, 可以选填 true 输出解题步骤
"""
n=length(b); A=copy(A); b=copy(b)
if SHOW pm(A,b) end
if SHOW println("化为上三角") end
for i=1:n-1
for j=i+1:n
c=A[j,i]/A[i,i]
b[j]=b[j]-b[i]*c
A[j,i:n]=A[j,i:n]-A[i,i:n]*c
end
if SHOW pm(A,b) end
end
if SHOW println("化为对角") end
for i=n:-1:2
for j=1:i-1
c=A[j,i]/A[i,i]
b[j]=b[j]-b[i]*c
A[j,i:n]=A[j,i:n]-A[i,i:n]*c
end
if SHOW pm(A,b) end
end
x=copy(b)
for j=1:n
x[j]=b[j]/A[j,j];
end
return(x)
end
举例
n=3;
A=ones(Rational,n,n)
b=ones(Rational,n)
for i=1:n-1
A[i,i]=2.0;
A[i,i+1]=1.0;
A[i+1,i]=1.0;
b[i]=i+0.0
end
A[n,n]=2.0;
b[n]=n;
x=LEsol(A,b,true)