### 逻辑回归的损失函数
逻辑回归模型用于分类问题,其输出是一个概率值。对于二分类问题,逻辑回归模型的输出可以表示为:
\[ P(y = 1 | x) = \frac{1}{1 + e^{-F(x)}} \]
其中 \( F(x) \) 是一个线性组合函数,通常表示为:
\[ F(x) = \sum_{m=0}^{M} h_m(x) \]
这里的 \( h_m(x) \) 是学习到的决策树。
### 损失函数的推导
对于单个样本 \((x_i, y_i)\),逻辑回归的损失函数通常采用对数似然损失(也称为交叉熵损失),定义如下:
\[ \text{loss}(x_i, y_i) = -y_i \log \hat{y}_i - (1 - y_i) \log (1 - \hat{y}_i) \]
其中:
- \( \hat{y}_i \) 是模型预测的概率。
- \( y_i \) 是实际的标签(0 或 1)。
### GBDT 中的损失函数
在 GBDT 中,我们假设第 \( k \) 步迭代之后当前学习器为 \( F(x) \),则损失函数可以写为:
\[ \text{loss}(x_i, y_i | F(x)) = y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \]
### 推导步骤
1. **定义预测概率**:
\[ \hat{y}_i = \frac{1}{1 + e^{-F(x_i)}} \]
2. **代入损失函数**:
\[ \text{loss}(x_i, y_i) = -y_i \log \hat{y}_i - (1 - y_i) \log (1 - \hat{y}_i) \]
\[ = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \log \left(1 - \frac{1}{1 + e^{-F(x_i)}}\right) \]
3. **简化表达式**:
\[ \text{loss}(x_i, y_i) = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \log \left(\frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}}\right) \]
\[ = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \left[\log(e^{-F(x_i)}) - \log(1 + e^{-F(x_i)})\right] \]
\[ = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \left[-F(x_i) - \log(1 + e^{-F(x_i)})\right] \]
\[ = y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \]
求梯度
为了求出给定损失函数的梯度,我们需要对损失函数关于 \( F(x_i) \) 求导。给定的损失函数是:
\[
\text{loss}(x_i, y_i | F(x)) = y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right]
\]
我们分两部分来计算梯度:
1. 对于第一部分 \( y_i \log \left(1 + e^{-F(x_i)}\right) \)
2. 对于第二部分 \( (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \)
### 第一部分的梯度
对于 \( y_i \log \left(1 + e^{-F(x_i)}\right) \),我们对其求导:
\[
\frac{\partial}{\partial F(x_i)} \left[ y_i \log \left(1 + e^{-F(x_i)}\right) \right]
\]
使用链式法则:
\[
\frac{\partial}{\partial F(x_i)} \left[ y_i \log \left(1 + e^{-F(x_i)}\right) \right] = y_i \cdot \frac{\partial}{\partial F(x_i)} \left[ \log \left(1 + e^{-F(x_i)}\right) \right]
\]
\[
= y_i \cdot \frac{1}{1 + e^{-F(x_i)}} \cdot (-e^{-F(x_i)})
\]
\[
= y_i \cdot \frac{-e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]
\[
= -y_i \cdot \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]
### 第二部分的梯度
对于 \( (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \),我们对其求导:
\[
\frac{\partial}{\partial F(x_i)} \left[ (1 - y_i) \left(F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right) \right]
\]
\[
= (1 - y_i) \cdot \left[ \frac{\partial}{\partial F(x_i)} F(x_i) + \frac{\partial}{\partial F(x_i)} \log \left(1 + e^{-F(x_i)}\right) \right]
\]
\[
= (1 - y_i) \cdot \left[ 1 + \frac{1}{1 + e^{-F(x_i)}} \cdot (-e^{-F(x_i)}) \right]
\]
\[
= (1 - y_i) \cdot \left[ 1 - \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}} \right]
\]
\[
= (1 - y_i) \cdot \left[ \frac{1 + e^{-F(x_i)} - e^{-F(x_i)}}{1 + e^{-F(x_i)}} \right]
\]
\[
= (1 - y_i) \cdot \left[ \frac{1}{1 + e^{-F(x_i)}} \right]
\]
### 合并两部分
将两部分合并起来:
\[
\frac{\partial}{\partial F(x_i)} \left[ y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \right]
\]
\[
= -y_i \cdot \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}} + (1 - y_i) \cdot \frac{1}{1 + e^{-F(x_i)}}
\]
\[
= -y_i \cdot \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}} + \frac{1 - y_i}{1 + e^{-F(x_i)}}
\]
\[
= \frac{-y_i e^{-F(x_i)} + 1 - y_i}{1 + e^{-F(x_i)}}
\]
\[
= \frac{1 - y_i - y_i e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]
\[
= \frac{1 - y_i - y_i e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]
最终得到的梯度为:
\[
\frac{\partial \text{loss}}{\partial F(x_i)} = \frac{1 - y_i - y_i e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]
简化
\[
\frac{\partial \text{loss}}{\partial F(x_i)} = \frac{1}{1 + e^{-F(x_i)}} - y_i
\]
### 总结
通过上述推导,我们可以看到逻辑回归的损失函数如何被应用于 GBDT 中。在每一步迭代中,GBDT 会根据当前模型的预测和实际标签之间的差异来更新新的弱学习器(通常是决策树),从而逐步减少损失函数的值。
这个过程确保了模型能够逐步逼近最优解,同时通过负梯度方向进行参数更新,有效地减少了损失函数的值。