python编程-OpenCV(图像读写-图像处理-图像滤波-角点检测-边缘检测)角点检测

角点检测(Corner Detection)是计算机视觉和图像处理中重要的步骤,主要用于提取图像中的关键特征,以便进行后续的任务,比如图像匹配、物体识别、运动跟踪等。下面介绍几种常用的角点检测方法及其应用。

1. Harris角点检测

Harris角点检测是一种经典的角点检测算法,基于图像的局部特征,通过计算图像的自相关矩阵来判断一个点是否为角点。

  • 原理

    • 计算局部窗口内的图像梯度,并构造自相关矩阵。
    • 通过计算赫希因子(Harris Matrix),确定强度响应,响应值大于一定阈值的点被认为是角点。
  • 优点

    • 对于噪声具有一定的鲁棒性。
    • 可以检测到多种类型的角点。

OpenCV 中的 cv.cornerHarris() 函数用来实现 Harris 角点检测。它的参数是:

img - 输入图像,应为 float32 类型的灰度图。
blockSize - 角点检测所考虑的邻域大小。
ksize - Sobel 导数的内核大小。
k - Harris 检测器方程中的自由参数。

 OpenCV 带有一个函数 cv.cornerSubPix() ,它进一步细化了角点检测,以达到亚像素级精度。

import numpy as np
import cv2 as cv
filename = 'output.png'
img = cv.imread(filename)
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# find Harris corners
gray = np.float32(gray)
dst = cv.cornerHarris(gray,2,3,0.04)
dst = cv.dilate(dst,None)
ret, dst = cv.threshold(dst,0.01*dst.max(),255,0)
dst = np.uint8(dst)
# find centroids
ret, labels, stats, centroids = cv.connectedComponentsWithStats(dst)
# define the criteria to stop and refine the corners
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 100, 0.001)
corners = cv.cornerSubPix(gray,np.float32(centroids),(5,5),(-1,-1),criteria)
# Now draw them
res = np.hstack((centroids,corners))
res = np.intp(res)
img[res[:,1],res[:,0]]=[0,0,255]
img[res[:,3],res[:,2]] = [0,255,0]
cv.imshow('sobely',img)
cv.waitKey(0)

2. Shi-Tomasi角点检测

Shi-Tomasi角点检测法是对Harris方法的改进,更注重测量响应函数的特征。

  • 原理

    • 通过计算两个特征值,选择具有较大特征值的点作为角点。
    • 角点的选择更为简洁和高效。
  • 优点

    • 对图像旋转和尺度变化具有更好的鲁棒性。
    • 适合实时应用,如视频监控。

OpenCV 有一个函数, cv.goodFeaturesToTrack() 。它通过 Shi-Tomasi 方法(或 Harris 角点检测,如果你指定它)在图像中找到 N 个最佳的角点。输入图像应该是灰度图像。然后指定要查找的角点数量。然后指定质量等级,该等级是 0-1 之间的值,所有低于这个质量等级的角点都将被忽略。最后设置检测到的两个角点之间的最小欧氏距离。
例如尝试找到 25 个最佳角点:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('f:/apple.jpg')
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
corners = cv.goodFeaturesToTrack(gray,25,0.01,10)
corners = np.intp(corners)
for i in corners:
    x,y = i.ravel()
    cv.circle(img,(x,y),3,255,-1)
plt.imshow(img),plt.show()

3. SIFT(尺度不变特征变换)

SIFT是一种用于检测和描述局部特征的算法,具有对尺度、旋转和光照变化的高鲁棒性。

  • 原理

    • 检测图像中多个尺度的关键点。
    • 生成每个关键点的描述符,以便进行特征匹配。
  • 优点

    • 高鲁棒性,适用于图像匹配、拼接等应用。
    • 可以处理遮挡和光照变化。

SIFT算法主要可以分成以下几个步骤:

  1. 构建高斯金字塔(Gaussian Pyramid)

    • 对于给定的图像,首先通过对图像进行不同尺度的高斯模糊,构建一个高斯金字塔。这涉及到对原图像逐层进行模糊,每一层的尺度增大。通常,金字塔中的每一层是上一层的平滑图像。
  2. 构建差分高斯金字塔(Difference of Gaussian)

    • 通过相邻的高斯图像层之间进行减法来计算差分高斯(DoG),该过程可以近似计算图像的拉普拉斯金字塔(Laplacian Pyramid)。
    • 公式为:

      3.  关键点检测

  • 对于每个像素点,寻找极值点,即在当前尺度和相邻的尺度(上层和下层)中具有极大或极小值的点。具体步骤如下:
    • 遍历图像的每个像素,检查其是否在其邻域内(包括尺度上和空间上)是最大或最小点。
    • 一般使用3x3x3的邻域,即考虑9个临近像素的3个尺度。

     4.  精确定位关键点

  • 对检测到的关键点进行细化,以提高其定位精度。常用的方法是通过泰勒级数展开。即优化关键点的位置,利用Hessian矩阵或者主导方向计算来细化关键点的位置和尺度。

   5. 选择主方向

  • 为每个关键点分配一个或多个主方向,以使得描述符具有旋转不变性。
    • 计算关键点周围一定半径内的梯度值,并确定主方向。
    • 形成一个方向直方图,用于统计方向,并选择最大直方图峰值作为关键点的主方向。

  6. 生成关键点描述符

  • 在每个关键点的周围区域中,计算其特征描述符。通常,这个区域被划分为多个子区块,并在每个子区块内计算梯度方向和幅值。
  • 将每个子块的梯度信息汇总,形成一个包含多维信息的特征向量。

  7. 特征点匹配(可选)

  • 利用上述计算得到的描述符,针对不同图像中的特征点进行匹配。通常采取欧几里德距离或二元汉明距离来计算描述符之间的相似度。

具体步骤

  1. 构建高斯金字塔:对图像进行多次高斯模糊,生成一系列不同尺度的图像。

  2. 计算差分高斯:通过相邻两层的高斯图像做差,提取出潜在的特征点。

  3. 找到极值点:例如,对于某个像素,比较它与相邻8个像素以及上面和下面的对应像素,如果它是最大的或最小的,则记为一个关键点。

  4. 关键点精确定位:利用插值方法进行位置微调,去除那些边缘响应较强或低对比度的关键点。

  5. 计算方向:统计关键点周围像素的梯度直方图,确定主要方向。

  6. 生成描述符:以关键点的主方向为基准,计算关键点周围小块的描述符。

  7. 匹配过程:对于每个图像的特征点,可以使用最近邻法或比例测试进行匹配。

import numpy as np
import cv2 as cv
img = cv.imread('f:/apple.jpg')
gray= cv.cvtColor(img,cv.COLOR_BGR2GRAY)
sift = cv.xfeatures2d.SIFT_create()
kp = sift.detect(gray,None)
img=cv.drawKeypoints(gray,kp,img)
img=cv.drawKeypoints(gray,kp,img,flags=cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv.imshow('SIFT',img)
cv.waitKey(0)

4. SURF算法

SURF的基本理念是在SIFT的基础上,通过加快特征点检测和描述过程,取得更高的效率。SURF的主要步骤如下:

1.1 特征点检测
  • Hessian矩阵:SURF使用Hessian矩阵的行列式来检测特征点。通过计算每个像素点的Hessian矩阵,可以快速找到潜在的特征点。Hessian矩阵具有以下形式:

  • 盒子滤波:为了计算Hessian矩阵的行列式,SURF使用的是快速的Haar小波卷积。这种方法通过将图像分为不同大小的盒子,并使用加权和减少计算复杂度。
  • 梯度计算:SURF在特征点周围的邻域内计算图像的梯度值,并将其组织成一个描述符。描述符的生成过程涉及多个子块,各子块的特征会被汇总成一个固定长度的描述符。

  • 方向归一化:为了确保特征描述符具有方向不变性,SURF根据特征点的主方向进行方向归一化。

1.2 特征描述符生成
  • 梯度计算:SURF在特征点周围的邻域内计算图像的梯度值,并将其组织成一个描述符。描述符的生成过程涉及多个子块,各子块的特征会被汇总成一个固定长度的描述符。

  • 方向归一化:为了确保特征描述符具有方向不变性,SURF根据特征点的主方向进行方向归一化。


import cv2 as cv
from matplotlib import pyplot as plt

# 读取图像
img = cv.imread('f:/apple.jpg', 0)

# Create SURF object. You can specify params here or later.
# Here I set Hessian Threshold to 400
surf = cv.xfeatures2d.SURF_create(400)
# Find keypoints and descriptors directly
kp, des = surf.detectAndCompute(img,None)

# Check present Hessian threshold
print( surf.getHessianThreshold() )

# We set it to some 50000. Remember, it is just for representing in picture.
# In actual cases, it is better to have a value 300-500
surf.setHessianThreshold(50000)
# Again compute keypoints and check its number.
kp, des = surf.detectAndCompute(img,None)
print( len(kp) )

img2 = cv.drawKeypoints(img,kp,None,(255,0,0),4)
plt.imshow(img2),plt.show()




5. ORB(Oriented FAST and Rotated BRIEF)

ORB结合了FAST特征检测和BRIEF特征描述,可以更快速地进行角点检测和描述。ORB 基本上是 FAST 特征点检测器和 Brief 描述子的融合,并进行了许多修改以增强性能。首先,它使用 FAST 查找特征点,然后应用 Harris 角点的测量方法来查找其中的前 N 个点。它还使用金字塔来生成多尺度特征。但有一个问题是,FAST 不计算方向。

  • 原理

    • 使用FAST算法检测特征点,计算点的方向和角度。
    • 采用BRIEF描述符来描述特征。
  • 优点

    • 快速高效,适合实时应用。
    • 对于图像的旋转具有稳健性。

cv.ORB()使用 feature2d 通用接口创建 ORB 对象。它有许多可选参数。
nFeatures,表示要保留的最大要素数量(默认为 500),
scoreType,  表示对特征点进行排序使用 Harris 得分或 FAST 得分(默认为 Harris 得分)等。
WTA_K, 决定生成一个 oriented BRIEF 描述子的所用的像素点数目。默认情况下它是 2,即一次选择两个点。在这种情况下进行匹配,使用 NORM_HAMMING 距离。如果 WTA_K 为 3 或 4,则需要 3 或 4 个点来产生 BRIEF 描述子,匹配距离由 NORM_HAMMING2 定义。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('f:/apple.jpg',0)
# Initiate ORB detector
orb = cv.ORB_create()
# find the keypoints with ORB
kp = orb.detect(img,None)
# compute the descriptors with ORB
kp, des = orb.compute(img, kp)
# draw only keypoints location,not size and orientation
img2 = cv.drawKeypoints(img, kp, None, color=(0,255,0), flags=0)
plt.imshow(img2), plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/956611.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Git实用指南:忽略文件、命令别名、版本控制、撤销修改与标签管理

目录 1.忽略特殊文件 1.1.那如何配置我们需要忽略的文件的呢? 1.2.如何检验效果? 2.给命令配置别名 3.基本操作之版本回退 3.1.使用场景: 3.2.使用方法: 4.撤销修改 情况一:对于工作区的代码,还没…

Linux的基本指令(上) -- 0基础入门

目录 知识点引入 基本指令 ls指令 pwd 命令 cd 指令 touch 指令 stat指令 mkdir 指令 tree指令 rmdir 指令 rm 命令 man 指令 which 指令 alias 指令 echo指令 输出重定向: > 追加重定向:>> cp 指令 知识点引入 1. Linux中路径用 / 作为路径分隔…

论文阅读:CosAE Learnable Fourier Series for Image Restoration

这是 2024 NeurIPS 上发表的一篇文章,介绍了一种新型的基于傅里叶级数的通用编码器。 Abstract 本文介绍了余弦自动编码器(Cosine Autoencoder, CosAE),这是一种新颖的通用自动编码器,它将经典傅里叶级数与前馈神经网…

网络编程-UDP套接字

文章目录 UDP/TCP协议简介两种协议的联系与区别Socket是什么 UDP的SocketAPIDatagramSocketDatagramPacket 使用UDP模拟通信服务器端客户端测试 完整测试代码 UDP/TCP协议简介 两种协议的联系与区别 TCP和UDP其实是传输层的两个协议的内容, 差别非常大, 对于我们的Java来说, …

【华为路由/交换机的ssh远程设置】

华为路由/交换机的ssh远程设置 R1(client):10.1.1.1 R2(server):10.1.1.2 R2服务端配置: 生成本机密钥 查看生成的密钥 设置AAA授权验证方式,并设置支持SSH协议 创建本地用户&…

计算机毕业设计PySpark+Hadoop+Hive机票预测 飞机票航班数据分析可视化大屏 航班预测系统 机票爬虫 飞机票推荐系统 大数据毕业设计

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

CSS笔记基础篇01——选择器、文字控制属性、背景属性、显示模式、盒子模型

黑马程序员视频地址: 前端Web开发HTML5CSS3移动web视频教程https://www.bilibili.com/video/BV1kM4y127Li?vd_source0a2d366696f87e241adc64419bf12cab&spm_id_from333.788.videopod.episodeshttps://www.bilibili.com/video/BV1kM4y127Li?vd_source0a2d3666…

C++学习第五天

创作过程中难免有不足,若您发现本文内容有误,恳请不吝赐教。 提示:以下是本篇文章正文内容,下面案例可供参考 一、构造函数 问题1 关于编译器生成的默认成员函数,很多童鞋会有疑惑:不实现构造函数的情况下…

2024嵌入式系统的未来发展与技术洞察分享

时间如白驹过隙,不知不觉又是一年,这一年收获满满。接下来,将本年度对技术的感悟和洞察分析如下,希望对大家有所帮助。 在过去几十年里,嵌入式系统技术迅速发展,成为现代电子设备和智能硬件的核心组成部分。…

01设计模式(D3_设计模式类型 - D3_行为型模式)

目录 一、模版方法模式 1. 基本介绍 2. 应用案例一:豆浆制作问题 需求 代码实现 模板方法模式的钩子方法 3. View的draw(Android) Android中View的draw方法就是使用了模板方法模式 模板方法模式在 Spring 框架应用的源码分析 知识小…

Linux 中如何使用 inotify-tools 监控目录变化 ?

当 Linux 系统目录中有新文件创建时执行命令,可以通过组合使用工具和脚本实现监控。一种常见的方法是使用 inotify-tools,这是一个允许您监视文件系统事件的实用程序,与 shell 脚本一起使用。 Step 1: 安装 inotify-tools 首先,…

vid2vid-zero:使用Stable Diffusion进行零样本视频编辑

Paper: Wang W, Jiang Y, Xie K, et al. Zero-shot video editing using off-the-shelf image diffusion models[J]. arXiv preprint arXiv:2303.17599, 2023. Introduction: Unreleased Code: https://github.com/baaivision/vid2vid-zero 目录 一. 预备知识1. diffusion 引导…

AI 大爆发时代,音视频未来路在何方?

AI 大模型突然大火了 回顾2024年,计算机领域最大的变革应该就是大模型进一步火爆了。回顾下大模型的发展历程: 萌芽期:(1950-2005) 1956年:计算机专家约翰麦卡锡首次提出“人工智能”概念,标志…

蓝桥杯训练—完美的代价

文章目录 一、题目二、示例三、解析四、代码 一、题目 回文串,是一种特殊的字符串,它从左往右读和从右往左读是一样的。现在给你一个串,它不一定是回文的,请你计算最少的交换次数使得该串变成一个完美的回文串。 交换的定义是&am…

雷电9最新版安装Magisk+LSPosd(新手速通)

大家好啊!我是NiJiMingCheng 我的博客:NiJiMingCheng 在安卓系统的定制与拓展过程中,获取 ROOT 权限以及安装各类框架是进阶玩家常用的操作,这可以帮助我们实现更多系统层面的个性化功能。今天,我将为大家详细介绍如何…

【25】Word:林涵-科普文章❗

目录 题目​ NO1.2.3 NO4.5.6 NO7.8 NO9.10 NO11.12 不连续选择:按住ctrl按键,不连续选择连续选择:按住shift按键,选择第一个,选择最后一个。中间部分全部被选择 题目 NO1.2.3 布局→纸张方向:横向…

ESP8266-01S、手机、STM32连接

1、ESP8266-01S的工作原理 1.1、AP和STA ESP8266-01S为WIFI的透传模块,主要模式如下图: 上节说到,我们需要用到AT固件进行局域网应用(ESP8266连接的STM32和手机进行连接)。 ESP8266为一个WiFi透传模块,和…

Vscode:问题解决办法 及 Tips 总结

Visual Studio Code(简称VSCode)是一个功能强大的开源代码编辑器,广泛用于各种编程语言和开发场景,本博客主要记录在使用 VSCode 进行verilog开发时遇到的问题及解决办法,使用过程中的技巧 文章目录 扩展安装失败调试配…

Comment(爆破+git泄漏+二次注入)

通过爆破密码的后三位,获得账号为:zhangwei666 F12查看控制台 使用bugscanteam的githack工具,下载泄漏的源码,根据控制台的提示,完整源码还在历史的commit中 git log –reflog 查看历史记录 查看最新的提交记录&#…

物联网网关Web服务器--Boa服务器移植与测试

1、Boa服务器介绍 BOA 服务器是一个小巧高效的web服务器,是一个运行于unix或linux下的,支持CGI的、适合于嵌入式系统的单任务的http服务器,源代码开放、性能高。 Boa 嵌入式 web 服务器的官方网站是http://www.boa.org/。 特点 轻量级&#x…