Conv2d中groups=2时手动计算及pytorch源码验证

文章目录

  • 1. excel 原理计算
  • 2. pytorch 源码

1. excel 原理计算

在这里插入图片描述

2. pytorch 源码

import torch
import torch.nn as nn
import torch.nn.functional as F

torch.set_printoptions(precision=3, sci_mode=False)

if __name__ == "__main__":
    run_code = 0
    batch_size = 2
    in_channels = 2
    out_channels = 2
    input_h = 3
    input_w = 3
    kernel_h = 2
    kernel_w = 2
    input_total = batch_size * in_channels * input_h * input_w
    input_shape = (batch_size, in_channels, input_w, input_h)
    ke_total = out_channels * in_channels * kernel_w * kernel_h
    ke_shape = (out_channels, in_channels, kernel_w, kernel_h)
    in_matrix = torch.arange(input_total).reshape(input_shape).to(torch.float)
    ke_matrix = torch.arange(ke_total).reshape(ke_shape).to(torch.float)
    print(f"in_matrix.shape=\n{in_matrix.shape}")
    print(f"ke_matrix.shape=\n{ke_matrix.shape}")
    print(f"in_matrix=\n{in_matrix}")
    print(f"ke_matrix=\n{ke_matrix}")
    my_conv2d = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_h, groups=2,
                          bias=False)
    my_conv2d_weight = my_conv2d.weight
    test_weight = torch.arange(8).reshape((2, 1, 2, 2)).to(torch.float)
    my_conv2d.weight = nn.Parameter(test_weight)
   # print(f"my_conv2d_weight=\n{my_conv2d_weight}")
   # print(f"my_conv2d_weight.shape=\n{my_conv2d_weight.shape}")
    print(f"test_weight=\n{test_weight}")
    out_matrix = my_conv2d(in_matrix)
    print(f"out_matrix=\n{out_matrix}")
    print(f"out_matrix.shape={out_matrix.shape}")
  • 结果:
in_matrix.shape=
torch.Size([2, 2, 3, 3])
ke_matrix.shape=
torch.Size([2, 2, 2, 2])
in_matrix=
tensor([[[[ 0.,  1.,  2.],
          [ 3.,  4.,  5.],
          [ 6.,  7.,  8.]],

         [[ 9., 10., 11.],
          [12., 13., 14.],
          [15., 16., 17.]]],


        [[[18., 19., 20.],
          [21., 22., 23.],
          [24., 25., 26.]],

         [[27., 28., 29.],
          [30., 31., 32.],
          [33., 34., 35.]]]])
ke_matrix=
tensor([[[[ 0.,  1.],
          [ 2.,  3.]],

         [[ 4.,  5.],
          [ 6.,  7.]]],


        [[[ 8.,  9.],
          [10., 11.]],

         [[12., 13.],
          [14., 15.]]]])
test_weight=
tensor([[[[0., 1.],
          [2., 3.]]],


        [[[4., 5.],
          [6., 7.]]]])
out_matrix=
tensor([[[[ 19.,  25.],
          [ 37.,  43.]],

         [[249., 271.],
          [315., 337.]]],


        [[[127., 133.],
          [145., 151.]],

         [[645., 667.],
          [711., 733.]]]], grad_fn=<ConvolutionBackward0>)
out_matrix.shape=torch.Size([2, 2, 2, 2])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/956239.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

支付宝商家转账到账户余额,支持多商户管理

大家好&#xff0c;我是小悟 转账到支付宝账户是一种通过 API 完成单笔转账的功能&#xff0c;支付宝商家可以向其他支付宝账户进行单笔转账。 商家只需输入另一个正确的支付宝账号&#xff0c;即可将资金从本企业支付宝账户转账至另一个支付宝账户。 该产品适用行业较广&am…

springboot医院信管系统

摘 要 随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&#xff0c;各行各业相继进入信息管理时代&a…

JavaWeb项目——如何处理管理员登录和退出——笔记

一、知识点 1、WebServlet注解的使用 WebServlet注解是Servlet 3.0引入的一个特性&#xff0c;它允许开发者在Servlet类上使用注解来声明Servlet的一些属性&#xff0c;从而避免在web.xml文件中进行配置。这种方式简化了Servlet的配置过程&#xff0c;使得代码更加简洁&#…

SpringMVC (1)

目录 1. 什么是Spring Web MVC 1.1 MVC的定义 1.2 什么是Spring MVC 1.3 Spring Boot 1.3.1 创建一个Spring Boot项目 1.3.2 Spring Boot和Spring MVC之间的关系 2. 学习Spring MVC 2.1 SpringBoot 启动类 2.2 建立连接 1. 什么是Spring Web MVC 1.1 MVC的定义 MVC 是…

4. LwIP_网络数据包管理

概述 协议栈的本质&#xff1a; TCP/IP协议栈的实现&#xff0c;本质上就是对数据包的管理。在LwIP中&#xff0c;定义了一个pbuf结构体对数据包进行管理。 pbuf管理数据包的步骤&#xff1a; 1、用户产生要传输的数据 2、用户在内存堆/内存池中申请一个pbuf结构体 3、将…

鸿蒙动态路由实现方案

背景 随着CSDN 鸿蒙APP 业务功能的增加&#xff0c;以及为了与iOS、Android 端统一页面跳转路由&#xff0c;以及动态下发路由链接&#xff0c;路由重定向等功能。鸿蒙动态路由方案的实现迫在眉睫。 实现方案 鸿蒙版本动态路由的实现原理&#xff0c;类似于 iOS与Android的实…

登录认证(1):登录的基本逻辑及实现思路

登录 在当今的大部分网站、应用、游戏中&#xff0c;为了确保资源的安全性和隐私保护&#xff0c;通常需要用户先进行身份验证&#xff08;即登录&#xff09;&#xff0c;然后才能使用特定的功能和服务。这样的做法不仅增加了系统安全性&#xff0c;还能够根据用户的偏好提供…

音乐播放器实现:前端HTML,CSS,JavaScript综合大项目

音乐播放器实现:前端HTML&#xff0c;CSS&#xff0c;JavaScript综合大项目 项目概述项目视图效果一、侧边栏相关代码&#xff08;一&#xff09;HTML代码&#xff08;二&#xff09;css代码 二、登录页面&#xff08;一&#xff09;HTML代码&#xff08;二&#xff09;css代码…

【js进阶】设计模式之单例模式的几种声明方式

单例模式&#xff0c;简言之就是一个类无论实例化多少次&#xff0c;最终都是同一个对象 原生js的几个辅助方式的实现 手写forEch,map,filter Array.prototype.MyForEach function (callback) {for (let i 0; i < this.length; i) {callback(this[i], i, this);} };con…

git系列之revert回滚

1. Git 使用cherry-pick“摘樱桃” step 1&#xff1a; 本地切到远程分支&#xff0c;对齐要对齐的base分支&#xff0c;举例子 localmap git pull git reset --hard localmap 对应的commit idstep 2&#xff1a; 执行cherry-pick命令 git cherry-pick abc123这样就会将远程…

【Web】2025西湖论剑·中国杭州网络安全安全技能大赛题解(全)

目录 Rank-l Rank-U sqli or not Rank-l username存在报错回显&#xff0c;发现可以打SSTI 本地起一个服务&#xff0c;折半查找fuzz黑名单&#xff0c;不断扔给fenjing去迭代改payload from flask import Flask, request, render_template_stringapp Flask(__name__)app…

Android系统开发(十四):跨进程通讯的隐形之手AIDL

引言 你是否曾在 Android 开发中为进程间通讯&#xff08;IPC&#xff09;头疼不已&#xff1f;如果是&#xff0c;那么 AIDL 就是你的救星&#xff01;它不仅让跨进程数据传输变得高效&#xff0c;而且还解决了异构环境的兼容性问题。本篇文章将带你深入了解 AIDL&#xff0c…

string类的常用接口及模拟实现

目录 基础知识 常用接口 1>常见构造 2>容量操作 3>访问及遍历操作 1.迭代器 2.反向迭代器 3.范围for 4.auto 4>修改操作 5>非成员函数 其它接口 模拟实现 string.h string.cpp swap() 基础知识 string是一个管理字符的类&#xff0c;定义在std命…

Linux——多线程的控制

Linux——线程的慨念及控制-CSDN博客 文章目录 目录 文章目录 前言 一、线程函数的认识 1、基本函数的回顾 1、线程的创建pthread_create 2、线程阻塞pthread_join 3、线程退出pthread_exit 2、线程的分离pthread_detach 3、互斥锁初始化函数&#xff1a;pthread_mutex_init 4、…

计算机网络 (49)网络安全问题概述

前言 计算机网络安全问题是一个复杂且多维的领域&#xff0c;它涉及到网络系统的硬件、软件以及数据的安全保护&#xff0c;确保这些元素不因偶然的或恶意的原因而遭到破坏、更改或泄露。 一、计算机网络安全的定义 计算机网络安全是指利用网络管理控制和技术措施&#xff0c;保…

TCP状态转移图详解

状态 描述 LISTEN represents waiting for a connection request from any remote TCP and port. SYN-SENT represents waiting for a matching connection request after having sent a connection request. SYN-RECEIVED represents waiting for a confirming connect…

VUE学习笔记(入门)5__vue指令v-html

v-html是用来解析字符串标签 示例 <!doctype html> <html lang"en"> <head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>Document<…

【论文投稿】探秘计算机视觉算法:开启智能视觉新时代

目录 引言 一、计算机视觉算法基石&#xff1a;图像基础与预处理 二、特征提取&#xff1a;视觉信息的精华萃取 三、目标检测&#xff1a;从图像中精准定位目标 四、图像分类&#xff1a;识别图像所属类别 五、语义分割&#xff1a;理解图像的像素级语义 六、计算机视觉…

【Java数据结构】Java对象的比较

元素的比较 基本类型比较 在Java中基本类型比较可以直接比较大小 &#xff0c;返回一个布尔类型&#xff08;true或者false&#xff09;。 int a 10; int b 20; System.out.println(a>b); System.out.println(ab); System.out.println(a<b);对象比较的问题 对象的比…

《自动驾驶与机器人中的SLAM技术》ch8:基于预积分和图优化的紧耦合 LIO 系统

和组合导航一样&#xff0c;也可以通过预积分 IMU 因子加上雷达残差来实现基于预积分和图优化的紧耦合 LIO 系统。一些现代的 Lidar SLAM 系统也采用了这种方式。相比滤波器方法来说&#xff0c;预积分因子可以更方便地整合到现有的优化框架中&#xff0c;从开发到实现都更为便…