PyTorch框架——基于深度学习YOLOv5神经网络水果蔬菜检测识别系统

基于深度学习YOLOv5神经网络水果蔬菜检测识别系统,其能识别的水果蔬菜有15种,# 水果的种类 names: ['黑葡萄', '绿葡萄', '樱桃', '西瓜', '龙眼', '香蕉', '芒果', '菠萝', '柚子', '草莓', '苹果', '柑橘', '火龙果', '梨子', '花生', '黄瓜', '土豆', '大蒜', '茄子', '白萝卜', '辣椒', '胡萝卜', '花菜', '白菜', '番茄', '西蓝花', '橙子'],见如下

第一步:YOLOv5介绍

YOLOv5是一种目标检测算法,它是YOLO(You Only Look Once)系列的最新版本。YOLOv5在YOLOv4的基础上进行了改进和优化,以提高检测的准确性和速度。

YOLOv5采用了一些新的技术和方法来改进目标检测的性能。其中包括以下几个方面:

  1. 损失函数:YOLOv5使用了CIOU_Loss作为bounding box的损失函数。CIOU_Loss是一种改进的IOU_Loss,可以更好地衡量目标框的位置和大小。

  2. 非极大值抑制(NMS):YOLOv5使用NMS来抑制重叠的边界框,以减少重复检测的问题。

  3. 聚类anchors:YOLOv5使用k-means聚类算法来生成anchors,这些anchors用于检测不同尺度的目标。

总的来说,YOLOv5在YOLOv4的基础上进行了一些改进和优化,以提高目标检测的准确性和速度。

标注数据,YOLOv5的训练和测试步骤,可以参考我的这篇博客:手把手教你通过YOLOv5训练自己的目标检测模型_yolov5怎么测试自己训练的结果-CSDN博客

第二步:YOLOv5网络结构

第三步:代码展示

# Ultralytics YOLO 🚀, AGPL-3.0 license

from pathlib import Path

from ultralytics.engine.model import Model
from ultralytics.models import yolo
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, OBBModel, PoseModel, SegmentationModel, WorldModel
from ultralytics.utils import ROOT, yaml_load


class YOLO(Model):
    """YOLO (You Only Look Once) object detection model."""

    def __init__(self, model="yolo11n.pt", task=None, verbose=False):
        """Initialize YOLO model, switching to YOLOWorld if model filename contains '-world'."""
        path = Path(model)
        if "-world" in path.stem and path.suffix in {".pt", ".yaml", ".yml"}:  # if YOLOWorld PyTorch model
            new_instance = YOLOWorld(path, verbose=verbose)
            self.__class__ = type(new_instance)
            self.__dict__ = new_instance.__dict__
        else:
            # Continue with default YOLO initialization
            super().__init__(model=model, task=task, verbose=verbose)

    @property
    def task_map(self):
        """Map head to model, trainer, validator, and predictor classes."""
        return {
            "classify": {
                "model": ClassificationModel,
                "trainer": yolo.classify.ClassificationTrainer,
                "validator": yolo.classify.ClassificationValidator,
                "predictor": yolo.classify.ClassificationPredictor,
            },
            "detect": {
                "model": DetectionModel,
                "trainer": yolo.detect.DetectionTrainer,
                "validator": yolo.detect.DetectionValidator,
                "predictor": yolo.detect.DetectionPredictor,
            },
            "segment": {
                "model": SegmentationModel,
                "trainer": yolo.segment.SegmentationTrainer,
                "validator": yolo.segment.SegmentationValidator,
                "predictor": yolo.segment.SegmentationPredictor,
            },
            "pose": {
                "model": PoseModel,
                "trainer": yolo.pose.PoseTrainer,
                "validator": yolo.pose.PoseValidator,
                "predictor": yolo.pose.PosePredictor,
            },
            "obb": {
                "model": OBBModel,
                "trainer": yolo.obb.OBBTrainer,
                "validator": yolo.obb.OBBValidator,
                "predictor": yolo.obb.OBBPredictor,
            },
        }


class YOLOWorld(Model):
    """YOLO-World object detection model."""

    def __init__(self, model="yolov8s-world.pt", verbose=False) -> None:
        """
        Initialize YOLOv8-World model with a pre-trained model file.

        Loads a YOLOv8-World model for object detection. If no custom class names are provided, it assigns default
        COCO class names.

        Args:
            model (str | Path): Path to the pre-trained model file. Supports *.pt and *.yaml formats.
            verbose (bool): If True, prints additional information during initialization.
        """
        super().__init__(model=model, task="detect", verbose=verbose)

        # Assign default COCO class names when there are no custom names
        if not hasattr(self.model, "names"):
            self.model.names = yaml_load(ROOT / "cfg/datasets/coco8.yaml").get("names")

    @property
    def task_map(self):
        """Map head to model, validator, and predictor classes."""
        return {
            "detect": {
                "model": WorldModel,
                "validator": yolo.detect.DetectionValidator,
                "predictor": yolo.detect.DetectionPredictor,
                "trainer": yolo.world.WorldTrainer,
            }
        }

    def set_classes(self, classes):
        """
        Set classes.

        Args:
            classes (List(str)): A list of categories i.e. ["person"].
        """
        self.model.set_classes(classes)
        # Remove background if it's given
        background = " "
        if background in classes:
            classes.remove(background)
        self.model.names = classes

        # Reset method class names
        # self.predictor = None  # reset predictor otherwise old names remain
        if self.predictor:
            self.predictor.model.names = classes

第四步:统计训练过程的一些指标,相关指标都有

第五步:运行(支持图片、文件夹、摄像头和视频功能)

第六步:整个工程的内容

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码

项目完整文件下载请见演示与介绍视频的简介处给出:➷➷➷

PyTorch框架——基于深度学习YOLOv5神经网络水果蔬菜检测识别系统_哔哩哔哩_bilibili

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/954646.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

用css和html制作太极图

目录 css相关参数介绍 边距 边框 伪元素选择器 太极图案例实现、 代码 效果 css相关参数介绍 边距 <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title><style>*{margin: 0;padding: 0;}div{width: …

WPF、控件模板(ControlTemplate)和数据模板(DataTemplate)

前言 在 WPF 中&#xff0c;控件种类丰富且功能非常完善。一个显著的优点是 WPF 提供了强大的自定义能力和灵活的用户界面表现&#xff0c;能够满足各种复杂的应用需求。其中&#xff0c;ControlTemplate 和 DataTemplate 是两个非常重要的概念&#xff0c;分别用于自定义控件…

RAG实战_01代码生成_02智能检索

整理了RAG案例的Git代码 https://github.com/LGRY/RAG_Tutorial/tree/main 【注意事项】 01 代码生成系统源代码中使用的weaviate向量数据库&#xff0c;不支持window系统&#xff0c;建议换系统/换向量数据库02 智能检索系统 同样需要配置向量数据库&#xff0c;可以先安…

【Linux系统编程】—— 自动化构建工具Makefile指南

文章目录 背景基本使用推导过程适度扩展语法 背景 Makefile 是衡量开发者是否具备完成大型工程能力的一个重要标志。在一个工程中&#xff0c;源文件的数量可能极多&#xff0c;这些文件会按照类型、功能或模块分布在多个目录中。Makefile 通过定义一系列规则&#xff0c;指定…

【JavaWeb01】JavaWeb开发基础:HTML的深度解析与应用

文章目录 前言&#x1f30d;一.B/S 软件开发架构简述&#x1f30d;二.HTML 介绍❄️2.1 官方文档❄️2.2 网页的组成❄️2.3 HTML 是什么❄️2.4html基本结构 &#x1f30d;三.HTML标签1.html 的标签/元素-说明2. html 标签注意事项和细节3.font 字体标签4.标题标签5.超链接标签…

Android-目前最稳定和高效的UI适配方案

谈到适配&#xff0c;首先需要介绍几个基本单位&#xff1a; 1、密度无关像素&#xff08;dp&#xff09;&#xff1a; 含义&#xff1a;density-independent pixel&#xff0c;叫dp或dip&#xff0c;与终端上的实际物理像素点无关 单位&#xff1a;dp&#xff0c;可以保证在…

图片和短信验证码(头条项目-06)

1 图形验证码接口设计 将后端⽣成的图⽚验证码存储在redis数据库2号库。 结构&#xff1a; {img_uuid:0594} 1.1 创建验证码⼦应⽤ $ cd apps $ python ../../manage.py startapp verifications # 注册新应⽤ INSTALLED_APPS [django.contrib.admin,django.contrib.auth,…

java8 springboot 集成javaFx 实现一个客户端程序

1. 先创建一个springboot 程序(此步骤不做流程展示) 2. 更改springboot的版本依赖和导入所需依赖 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.7.7</versio…

linux手动安装mysql5.7

一、下载mysql5.7 1、可以去官方网站下载mysql-5.7.24-linux-glibc2.12-x86_64.tar压缩包&#xff1a; https://downloads.mysql.com/archives/community/ 2、在线下载&#xff0c;使用wget命令&#xff0c;直接从官网下载到linux服务器上 wget https://downloads.mysql.co…

数据结构(链表 哈希表)

在Python中&#xff0c;链表和哈希表都是常见的数据结构&#xff0c;可以用来存储和处理数据。 链表是一种线性数据结构&#xff0c;由一系列节点组成&#xff0c;每个节点包含一个数据元素和一个指向下一个节点的指针。链表可以用来实现栈、队列以及其他数据结构。Python中可…

【GPT进化之路】从 GPT-1 的初试锋芒到 GPT-4 的跨模态智能时代

网罗开发 &#xff08;小红书、快手、视频号同名&#xff09; 大家好&#xff0c;我是 展菲&#xff0c;目前在上市企业从事人工智能项目研发管理工作&#xff0c;平时热衷于分享各种编程领域的软硬技能知识以及前沿技术&#xff0c;包括iOS、前端、Harmony OS、Java、Python等…

linux之进程信号(初识信号,信号的产生)

目录 引入一、初识信号(信号预备知识)1.生活中的信号2.Linux中的信号3.信号进程得出的初步结论 二、信号的产生1.通过终端输入产生信号拓展: 硬件中断2.调用系统函数向进程发信号3.硬件异常产生信号4.软件条件产生信号拓展: 核心转储技术总结一下&#xff1a; 引入 一、初识信…

24-25-1-单片机开卷部分习题和评分标准

依据相关规定试卷必须按评分标准进行批改。 给分一定是宽松的&#xff0c;能给分一定给&#xff0c;如有疑问也可以向学院教务办申请查卷。 一部分学生期末成绩由于紧张或其他原因导致分数过低&#xff0c;也是非常非常遗憾的。 个人也是非常抱歉的。 开卷考试 简答题 第一…

电动汽车V2G技术Matlab/Simulink仿真模型

今天给大家更新关于V2G技术的仿真&#xff0c;不是研究这个方向的&#xff0c;可能会对这个名称比较陌生&#xff0c;那么&#xff0c;什么是“V2G”&#xff1f; V2G全称&#xff1a;Vehicle-to-Grid&#xff0c;即车网互动&#xff0c;利用电动汽车特有的储能功能与电网“双…

统计学习算法——决策树

内容来自B站Up主&#xff1a;风中摇曳的小萝卜https://www.bilibili.com/video/BV1ar4y137GD&#xff0c;仅为个人学习所用。 问题引入 有15位客户向某银行申请贷款&#xff0c;下面是他们的一些基本信息&#xff0c;类别列表示是否通过贷款申请&#xff0c;是表示通过贷款申…

Pytorch导出onnx模型并在C++环境中调用(含python和C++工程)

Pytorch导出onnx模型并在C环境中调用&#xff08;含python和C工程&#xff09; 工程下载链接&#xff1a;Pytorch导出onnx模型并在C环境中调用&#xff08;python和C工程&#xff09; 机器学习多层感知机MLP的Pytorch实现-以表格数据为例-含数据集和PyCharm工程中简单介绍了在…

Uniapp判断设备是安卓还是 iOS,并调用不同的方法

在 UniApp 中&#xff0c;可以通过 uni.getSystemInfoSync() 方法来获取设备信息&#xff0c;然后根据系统类型判断当前设备是安卓还是 iOS&#xff0c;并调用不同的方法。 示例代码 export default {onLoad() {this.checkPlatform();},methods: {checkPlatform() {// 获取系…

VMWare虚拟机+Ubuntu24.04+ROS2Jazzy版本安装——踩坑及爬坑过程

VMWare安装 VMWare安装参考VMWare安装&#xff0c;WMWare workstation从17版本以后就面向个人用户免费开放了&#xff0c;所以在安装的最后只要勾选“用于个人”这个选项&#xff0c;就无需再输入激活码等&#xff0c;非常方便。 WMWare workstation17的获取地址&#xff1a;通…

【Golang 面试题】每日 3 题(三十一)

✍个人博客&#xff1a;Pandaconda-CSDN博客 &#x1f4e3;专栏地址&#xff1a;http://t.csdnimg.cn/UWz06 &#x1f4da;专栏简介&#xff1a;在这个专栏中&#xff0c;我将会分享 Golang 面试中常见的面试题给大家~ ❤️如果有收获的话&#xff0c;欢迎点赞&#x1f44d;收藏…

分布式数据存储基础与HDFS操作实践(副本)

以下为作者本人撰写的报告&#xff0c;步骤略有繁琐&#xff0c;不建议作为参考内容&#xff0c;可以适当浏览&#xff0c;进一步理解。 一、实验目的 1、理解分布式文件系统的基本概念和工作原理。 2、掌握Hadoop分布式文件系统&#xff08;HDFS&#xff09;的基本操作。 …