线性回归——学习时间与学习成绩的关系
第1步:导入工具库
pandas——数据分析库,提供了数据结构(如DataFrame和Series)和数据操作方法,方便对数据集进行读取、清洗、转换等操作。
matplotlib——绘图库,pyplot提供了一系列简单易用的绘图函数,用于创建各种类型的图表,如折线图、散点图、柱状图等。
%matplotlib inline——使matplotlib绘制的图像嵌入在 Jupyter Notebook 的单元格里,这样在运行代码后可以直接在 Notebook 中看到绘制的图形,而不是弹出一个新的图形窗口。
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
第2步:导入并查看数据集
dataset = pd.read_csv(‘./studentscores.csv’)——使用pandas的read_csv函数读取当前目录下名为studentscores.csv的 CSV 文件,并将数据存储在dataset变量中。
dataset是一个DataFrame类型的对象,它类似于一个二维表格,每行代表一条数据记录,每列代表一个特征或变量。
Series 是简单的一列数据,而 DataFrame 是由多个 Series 组成的更复杂的表格结构
dataset=pd.read_csv('./studentscores.csv')
type(dataset)
pandas.core.frame.DataFrame
dataset.head()
Hours | Scores | |
---|---|---|
0 | 2.5 | 21 |
1 | 5.1 | 47 |
2 | 3.2 | 27 |
3 | 8.5 | 75 |
4 | 3.5 | 30 |
head()——默认显示前5行数据,用于快速查看数据的大致结构和内容
shape——数据集的形状,(25行,2列)
columns——列名集合
info()——详细信息
describe()——各种描述性统计分析
dataset.shape
(25, 2)
dataset.columns
Index(['Hours', 'Scores'], dtype='object')
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25 entries, 0 to 24
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Hours 25 non-null float64
1 Scores 25 non-null int64
dtypes: float64(1), int64(1)
memory usage: 528.0 bytes
dataset.describe()
Hours | Scores | |
---|---|---|
count | 25.000000 | 25.000000 |
mean | 5.012000 | 51.480000 |
std | 2.525094 | 25.286887 |
min | 1.100000 | 17.000000 |
25% | 2.700000 | 30.000000 |
50% | 4.800000 | 47.000000 |
75% | 7.400000 | 75.000000 |
max | 9.200000 | 95.000000 |
第3步:提取特征和标签
定义了两个列表feature_columns和label_column,分别用于指定数据集的特征列和标签列。
这里将Hours列作为特征列(x),将Scores列作为标签列(y),即要预测的目标变量。
feature_columns=['Hours']
label_column=['Scores']
features = dataset[feature_columns]:从dataset中提取feature_columns指定的列数据,存储在features变量中,features也是一个DataFrame对象。
label = dataset[label_column]:从dataset中提取label_column指定的列数据,存储在label变量中,label是一个DataFrame对象,但只有一列数据。
features=dataset[feature_columns]
label=dataset[label_column]
type(features)
pandas.core.frame.DataFrame
features.head()
Hours | |
---|---|
0 | 2.5 |
1 | 5.1 |
2 | 3.2 |
3 | 8.5 |
4 | 3.5 |
在机器学习模型中,通常需要使用 numpy 数组格式的数据来进行训练和预测。sklearn 等机器学习库中的大多数函数和模型都期望输入数据为 numpy 数组形式。通过使用 .values 属性,我们可以将 pandas 数据结构中的数据提取为 numpy 数组,以便与这些机器学习模型兼容。
X=features.values
Y=label.values
第4步:划分数据集
四分之一作为训练集
从sklearn.model_selection模块中导入train_test_split函数,该函数用于将数据集拆分为训练集和测试集。
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42):X:特征矩阵,y:目标向量,test_size:测试集的比例,random_state:随机数种子
关于随机数种子:
作用?设置此参数可以保证每次运行代码时,数据的划分结果是相同的,有助于代码的可重复性。
可重复性?指我们可以在相同的训练集和测试集上测试不同的模型或模型参数,公平地比较它们的效果,而不用担心是因为数据集划分不同导致的结果差异。
参数取值?该参数的取值没有特定的限制,通常可以是任意整数;但是不建议用默认值NULL,这样每次调用 train_test_split 函数会使用不同的随机数种子,导致每次数据集的划分结果不同。
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=1/4,random_state=0)
第5步:建立模型
训练模型
从sklearn.linear_model模块中导入LinearRegression线性回归模型类。
regressor = LinearRegression():创建一个LinearRegression类的实例regressor,即初始化一个线性回归模型。
regressor = regressor.fit(X_train, Y_train):调用regressor的fit方法,使用训练集数据X_train和Y_train对线性回归模型进行训练,拟合出模型的参数(如斜率和截距)。
from sklearn.linear_model import LinearRegression
regressor=LinearRegression()
regressor=regressor.fit(X_train,Y_train)
测试模型
调用predict方法:使用训练好的线性回归模型regressor对测试集特征X_test进行预测,得到预测结果Y_pred。
Y_pred=regressor.predict(X_test)
可视化
#散点图:红色点表示原始测试集的点,蓝色表示预测点
plt.scatter(X_test,Y_test,color='red')
plt.scatter(X_test,Y_pred,color='blue',marker='*')
#线图:蓝色线表示训练出来的回归线
plt.plot(X_test,Y_pred,color='blue')
plt.show()