基于华为atlas的重车(满载)空车(空载)识别

该教程主要是想摸索出华为atlas的基于ACL的推理模式。最终实现通过煤矿磅道上方的摄像头,识别出车辆的重车(满载)、空车(空载)情况。本质上是一个简单的检测问题。

但是整体探索过程比较坎坷,Tianxiaomo的代码可以基于原始yolov4模型进行推理,可以转化onnx,但是训练过程我感觉代码有问题,loss很大,也没检测框输出。同时输出的结果的维度和atlas教程的维度也不一样。对于这2个问题,第1个问题训练效果不对选择使用原始darknet网络解决,第2个问题输出维度和atlas不一样通过重新实现atlas后处理代码实现。

风雨兼程,终见彩虹;艰辛耕耘,方得硕果。

darknet数据集制作及配置文件修改:

(1)数据集采用labelimg工具标注为VOC格式,一共标注了1087张图片。

(2)数据集格式如下,

其中,VOC2025为我自己的数据集起的名字,你也可以起别的名字,Annotations存放XML文件,Main中存放,train.txt,val.txt,txt中只写图片的名字,一行一个。JPEGImages中存放图片。labels中存放由XML生成的txt文件。

(3)修改scripts下面的voc_label.py,将数据集的目录修改为自己的目录,

#开始几行
sets=[('2025', 'train'), ('2025', 'val')]
classes = ["full", "empty"]
#最后2行
os.system("cat 2025_train.txt 2025_val.txt > train.txt")
os.system("cat 2025_train.txt 2025_val.txt > train.all.txt")

然后执行

Python3 scripts/voc_label.py

就会生成labels文件夹,以及文件夹下面的txt标记,以及train.txt 和train.all.txt

其中,train.txt中存储路径+图片名,一行一个

/data/jxl/darknet/VOCdevkit/VOC2025/JPEGImages/3743_01467.jpg
/data/jxl/darknet/VOCdevkit/VOC2025/JPEGImages/3743_01468.jpg
/data/jxl/darknet/VOCdevkit/VOC2025/JPEGImages/3743_01469.jpg
/data/jxl/darknet/VOCdevkit/VOC2025/JPEGImages/3743_01559.jpg

Labels文件夹下每个图片对应一个txt文件,里面存储类别 框坐标的归一化值

0 0.6794407894736842 0.5394736842105263 0.5516447368421052 0.9195906432748537

(4)修改,cfg/fullempty.data

classes= 2
train  = ./VOCdevkit/VOC2025/ImageSets/Main/train.txt
valid  = ./VOCdevkit/VOC2025/ImageSets/Main/val.txt
names = ./data/fullempty.names
backup = ./pjreddie/backup/

class为训练的类别数

train为训练集train.txt

valid为验证集val.txt

names为fullempty.names,里面为自己训练的目标名称

backup为weights的存储位置

(5)修改cfg/yolov4-fullempty.cfg

修改每个classes=2

修改最后一个卷基层,filters和最后一个region的classes,num参数是因为yolov4有3个分支,每个分支3个anchor。

其中,filters=num×(classes + coords + 1)=3*(2+4+1)=21,这里我有2个类别。

(6)修改data/fullempty.names

full
empty

darknet模型训练:

./darknet detector train ./cfg/fullempty.data ./cfg/yolov4-fullempty.cfg  ./yolov4.weights -clear

darknet的.weights模型测试:

./darknet detect  ./cfg/yolov4-fullempty.cfg  ./pjreddie/backup/yolov4-fullempty_last.weights  ./VOCdevkit/VOC2025/JPEGImages/2793_00847.jpg

Pytorch代码配置文件修改:

#cfg.py,

Cfg.use_darknet_cfg = True
Cfg.cfgfile = os.path.join(_BASE_DIR, 'cfg', 'yolov4-custom.cfg')

#cfg/yolov4-custom.cfg,

Pytorch代码bug修改:

#train.py211行,

pred_ious = bboxes_iou(pred[b].view(-1, 4), truth_box, xyxy=False)修改为,
pred_ious = bboxes_iou(pred[b].contiguous().view(-1, 4), truth_box, xyxy=False)

# dataset.py, get_image_id函数,因为我的图片命名规则是Id_id.jpg,所以将2个id拼接起来作为最终的id。

parts = filename.split('.')[0].split('_')
id = int(parts[0]+ parts[1])
return id

基于pytorch代码的.weights模型测试:

python3 demo.py -cfgfile ./cfg/yolov4-custom.cfg -weightfile ./yolov4-fullempty_last.weights -imgfile ./full_empty_dataset/images/2793_00847.jpg -torch False

.weights模型转onnx模型:

python3 demo_darknet2onnx.py ./cfg/yolov4-custom.cfg ./data/full_empty.names ./yolov4-fullempty_last.weights ./full_empty_dataset/images/2793_00847.jpg 1

onnx模型转om模型:

atc --model=./yolov4_1_3_608_608_static.onnx --framework=5 --output=yolov4_bs1 --input_shape="input:1,3,608, 608"  --soc_version=Ascend310P3 --input_format=NCHW

atlas推理代码编写:

#yolov4.py

import sys
sys.path.append("./common/acllite")
import os
import numpy as np
import acl
import cv2
import time
from acllite_model import AclLiteModel
from acllite_resource import AclLiteResource

from utils import post_processing, plot_boxes_cv2

MODEL_PATH = "./model/yolov4_bs1.om"

#ACL resource initialization
acl_resource = AclLiteResource()
acl_resource.init()
#load model
model = AclLiteModel(MODEL_PATH)
 

class YOLOV4(object):
    def __init__(self):
        self.MODEL_PATH = MODEL_PATH
        self.MODEL_WIDTH = 608
        self.MODEL_HEIGHT = 608

        self.class_names= ['full', 'empty']

        self.model = model
 
    def preprocess(self, bgr_img):
        sized = cv2.resize(bgr_img.copy(), (self.MODEL_WIDTH, self.MODEL_HEIGHT))
        sized = cv2.cvtColor(sized, cv2.COLOR_BGR2RGB)
    
        new_image = sized.astype(np.float32)
        new_image = new_image / 255.0
        new_image = new_image.transpose(2, 0, 1).copy()
    
        return new_image


    def process(self, bgr_img):
        height, width = bgr_img.shape[:2]
        #preprocess
        data = self.preprocess(bgr_img)#(3, 608, 608)

        #Send into model inference
        result_list = self.model.execute([data,])    
        #Process inference results

        conf_thresh, nms_thresh = 0.4, 0.6
        boxes = post_processing(conf_thresh, nms_thresh, result_list, height, width)
        return boxes

    def draw(self, bgr_img, boxes):
        drawed_img = plot_boxes_cv2(bgr_img, boxes[0], class_names=self.class_names)
        return drawed_img

def test_image():
    yolov4 = YOLOV4()
    img_name = "./data/3553_00173.jpg"

    #read image
    bgr_img = cv2.imread(img_name)

    t1 = time.time()
    boxes = yolov4.process(bgr_img)
    t2 = time.time()
    drawed_img = yolov4.draw(bgr_img, boxes)
    t3 = time.time()
    print("result = ", len(boxes[0]), boxes, t2-t1, t3-t2)

    cv2.imwrite("out.jpg", drawed_img)

if __name__ == '__main__':
    test_image()

#utils.py

import sys
import os
import time
import math
import numpy as np

import itertools
import struct  # get_image_size
import imghdr  # get_image_size


def sigmoid(x):
    return 1.0 / (np.exp(-x) + 1.)


def softmax(x):
    x = np.exp(x - np.expand_dims(np.max(x, axis=1), axis=1))
    x = x / np.expand_dims(x.sum(axis=1), axis=1)
    return x


def bbox_iou(box1, box2, x1y1x2y2=True):
    if x1y1x2y2:
        mx = min(box1[0], box2[0])
        Mx = max(box1[2], box2[2])
        my = min(box1[1], box2[1])
        My = max(box1[3], box2[3])
        w1 = box1[2] - box1[0]
        h1 = box1[3] - box1[1]
        w2 = box2[2] - box2[0]
        h2 = box2[3] - box2[1]
    else:
        w1 = box1[2]
        h1 = box1[3]
        w2 = box2[2]
        h2 = box2[3]

        mx = min(box1[0], box2[0])
        Mx = max(box1[0] + w1, box2[0] + w2)
        my = min(box1[1], box2[1])
        My = max(box1[1] + h1, box2[1] + h2)
    uw = Mx - mx
    uh = My - my
    cw = w1 + w2 - uw
    ch = h1 + h2 - uh
    carea = 0
    if cw <= 0 or ch <= 0:
        return 0.0

    area1 = w1 * h1
    area2 = w2 * h2
    carea = cw * ch
    uarea = area1 + area2 - carea
    return carea / uarea


def nms_cpu(boxes, confs, nms_thresh=0.5, min_mode=False):
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]

    areas = (x2 - x1) * (y2 - y1)
    order = confs.argsort()[::-1]

    keep = []
    while order.size > 0:
        idx_self = order[0]
        idx_other = order[1:]

        keep.append(idx_self)

        xx1 = np.maximum(x1[idx_self], x1[idx_other])
        yy1 = np.maximum(y1[idx_self], y1[idx_other])
        xx2 = np.minimum(x2[idx_self], x2[idx_other])
        yy2 = np.minimum(y2[idx_self], y2[idx_other])

        w = np.maximum(0.0, xx2 - xx1)
        h = np.maximum(0.0, yy2 - yy1)
        inter = w * h

        if min_mode:
            over = inter / np.minimum(areas[order[0]], areas[order[1:]])
        else:
            over = inter / (areas[order[0]] + areas[order[1:]] - inter)

        inds = np.where(over <= nms_thresh)[0]
        order = order[inds + 1]
    
    return np.array(keep)



def plot_boxes_cv2(img, boxes, class_names=None, color=None):
    import cv2
    img = np.copy(img)
    colors = np.array([[1, 0, 1], [0, 0, 1], [0, 1, 1], [0, 1, 0], [1, 1, 0], [1, 0, 0]], dtype=np.float32)

    def get_color(c, x, max_val):
        ratio = float(x) / max_val * 5
        i = int(math.floor(ratio))
        j = int(math.ceil(ratio))
        ratio = ratio - i
        r = (1 - ratio) * colors[i][c] + ratio * colors[j][c]
        return int(r * 255)

    width = img.shape[1]
    height = img.shape[0]
    for i in range(len(boxes)):
        box = boxes[i]
        x1 = int(box[0])
        y1 = int(box[1])
        x2 = int(box[2])
        y2 = int(box[3])
 
        bbox_thick = int(0.6 * (height + width) / 600)
        if color:
            rgb = color
        else:
            rgb = (255, 0, 0)
        if len(box) >= 7 and class_names:
            cls_conf = box[5]
            cls_id = box[6]
            print('%s: %f' % (class_names[cls_id], cls_conf))
            classes = len(class_names)
            offset = cls_id * 123457 % classes
            red = get_color(2, offset, classes)
            green = get_color(1, offset, classes)
            blue = get_color(0, offset, classes)
            if color is None:
                rgb = (red, green, blue)
            msg = str(class_names[cls_id])+" "+str(round(cls_conf,3))
            t_size = cv2.getTextSize(msg, 0, 0.7, thickness=bbox_thick // 2)[0]
            c1, c2 = (x1,y1), (x2, y2)
            c3 = (c1[0] + t_size[0], c1[1] - t_size[1] - 3)

            cv2.rectangle(img, (x1,y1), (np.int32(c3[0]), np.int32(c3[1])), rgb, -1)
            img = cv2.putText(img, msg, (c1[0], np.int32(c1[1] - 2)), cv2.FONT_HERSHEY_SIMPLEX,0.7, (0,0,0), bbox_thick//2,lineType=cv2.LINE_AA)
            #cv2.rectangle(img, (x1,y1), (np.float32(c3[0]), np.float32(c3[1])), rgb, -1)
            #img = cv2.putText(img, msg, (c1[0], np.float32(c1[1] - 2)), cv2.FONT_HERSHEY_SIMPLEX,0.7, (0,0,0), bbox_thick//2,lineType=cv2.LINE_AA)
        
        img = cv2.rectangle(img, (x1, y1), (x2, y2), rgb, bbox_thick)
    return img


def read_truths(lab_path):
    if not os.path.exists(lab_path):
        return np.array([])
    if os.path.getsize(lab_path):
        truths = np.loadtxt(lab_path)
        truths = truths.reshape(truths.size / 5, 5)  # to avoid single truth problem
        return truths
    else:
        return np.array([])


def load_class_names(namesfile):
    class_names = []
    with open(namesfile, 'r') as fp:
        lines = fp.readlines()
    for line in lines:
        line = line.rstrip()
        class_names.append(line)
    return class_names



def post_processing(conf_thresh, nms_thresh, output, height, width):

    # anchors = [12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401]
    # num_anchors = 9
    # anchor_masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
    # strides = [8, 16, 32]
    # anchor_step = len(anchors) // num_anchors

    # [batch, num, 1, 4]
    box_array = output[0]
    # [batch, num, num_classes]
    confs = output[1]

    t1 = time.time()

    if type(box_array).__name__ != 'ndarray':
        box_array = box_array.cpu().detach().numpy()
        confs = confs.cpu().detach().numpy()

    num_classes = confs.shape[2]

    # [batch, num, 4]
    box_array = box_array[:, :, 0]

    # [batch, num, num_classes] --> [batch, num]
    max_conf = np.max(confs, axis=2)
    max_id = np.argmax(confs, axis=2)

    t2 = time.time()

    bboxes_batch = []
    for i in range(box_array.shape[0]):
       
        argwhere = max_conf[i] > conf_thresh
        l_box_array = box_array[i, argwhere, :]
        l_max_conf = max_conf[i, argwhere]
        l_max_id = max_id[i, argwhere]

        bboxes = []
        # nms for each class
        for j in range(num_classes):

            cls_argwhere = l_max_id == j
            ll_box_array = l_box_array[cls_argwhere, :]
            ll_max_conf = l_max_conf[cls_argwhere]
            ll_max_id = l_max_id[cls_argwhere]

            keep = nms_cpu(ll_box_array, ll_max_conf, nms_thresh)
            
            if (keep.size > 0):
                ll_box_array = ll_box_array[keep, :]
                ll_max_conf = ll_max_conf[keep]
                ll_max_id = ll_max_id[keep]

                for k in range(ll_box_array.shape[0]):
                    bboxes.append([ll_box_array[k, 0]*width, ll_box_array[k, 1]*height, ll_box_array[k, 2]*width, ll_box_array[k, 3]*height, ll_max_conf[k], ll_max_conf[k], ll_max_id[k]])
        
        bboxes_batch.append(bboxes)

    t3 = time.time()
    return bboxes_batch

atlas推理代码测试:

python3 yolov4.py

视频测试:

参考链接:

https://github.com/AlexeyAB/darknet

https://github.com/Tianxiaomo/pytorch-YOLOv4

samples: CANN Samples - Gitee.com

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/953264.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

pytest+allure 入门

使用allure如何生成自动化测试报​​​​​​告 &#xff1f;一文详解allure的使用 。_allure测试报告-CSDN博客 例子&#xff1a; import allure import pytest import osallure.epic("闹钟") allure.feature("闹钟增删") class TestSchedule():def setu…

excel VBA 基础教程

这里写目录标题 快捷键选择所有有内容的地方 调试VBA录制宏&#xff0c;打开VBA开发工具录制宏,相当于excel自动写代码&#xff08;两个表格内容完全一致才可以&#xff09; 查看宏代码保持含有宏程序的文件xlsm后缀&#xff08;注意很容易有病毒&#xff09;宏文件安全设置 使…

Excel数据叠加生成新DataFrame:操作指南与案例

目录 一、准备工作 二、读取Excel文件 三、数据叠加 四、处理重复数据&#xff08;可选&#xff09; 五、保存新DataFrame到Excel文件 六、案例演示 七、注意事项 八、总结 在日常数据处理工作中&#xff0c;我们经常需要将不同Excel文档中的数据整合到一个新的DataFra…

Django创建数据表、模型、ORM操作

1、创建项目 django-admin startproject PersonInfosProject 2、创建项目应用&#xff0c;进入PersonInfosProject文件夹&#xff0c;新建index应用&#xff0c;使用命令 cd PersonInfosProject python manage.py startapp 新建完成之后的目录结构 3、新建数据模型&#xf…

ZYNQ初识10(zynq_7010)UART通信实验

基于bi站正点原子讲解视频&#xff1a; 系统框图&#xff08;基于串口的数据回环&#xff09;如下&#xff1a; 以下&#xff0c;是串口接收端的波形图&#xff0c;系统时钟和波特率时钟不同&#xff0c;为异步时钟&#xff0c;&#xff0c;需要先延时两拍&#xff0c;将时钟同…

【ORACLE战报】2025.1月OCP | MySQL考试

2025.1月【最新考试成绩出炉】 OCP战报 MySQL 战报 部分学员成绩及证书

力扣经典练习题之198.打家劫舍

今天继续给大家分享一道力扣的做题心得今天这道题目是198.打家劫舍,这是一道非常经典的问题,在动态规划中经常考到这类问题,题目如下: 题目链接:198.打家劫舍 1,题目分析 首先此题就是给我们了一个数组,代表可以偷的房屋中的对应的金额,我们是一个小偷,一次可以偷很多…

【数据库】一、数据库系统概述

文章目录 一、数据库系统概述1 基本概念2 现实世界的信息化过程3 数据库系统内部体系结构4 数据库系统外部体系结构5 数据管理方式 一、数据库系统概述 1 基本概念 数据&#xff1a;描述事物的符号记录 数据库&#xff08;DB&#xff09;&#xff1a;长期存储在计算机内的、…

Redis有哪些常用应用场景?

大家好&#xff0c;我是锋哥。今天分享关于【Redis有哪些常用应用场景&#xff1f;】面试题。希望对大家有帮助&#xff1b; Redis有哪些常用应用场景&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Redis 是一个高性能的开源键值对&#xff08;Key-Va…

[uniapp] 实现扫码功能,含APP、h5、小程序

&#x1f680; 个人简介&#xff1a;某大型国企资深软件开发工程师&#xff0c;信息系统项目管理师、CSDN优质创作者、阿里云专家博主&#xff0c;华为云云享专家&#xff0c;分享前端后端相关技术与工作常见问题~ &#x1f49f; 作 者&#xff1a;码喽的自我修养&#x1f9…

《异步编程之美》— 全栈修仙《Java 8 CompletableFuture 对比 ES6 Promise 以及Spring @Async》

哈喽&#xff0c;大家好&#xff01;在平常开发过程中会遇到许多意想不到的坑&#xff0c;本篇文章就记录在开发过程中遇到一些常见的问题&#xff0c;看了许多博主的异步编程&#xff0c;我只能说一言难尽。本文详细的讲解了异步编程之美&#xff0c;是不可多得的好文&#xf…

day07_Spark SQL

文章目录 day07_Spark SQL课程笔记一、今日课程内容二、Spark SQL函数定义&#xff08;掌握&#xff09;1、窗口函数2、自定义函数背景2.1 回顾函数分类标准:SQL最开始是_内置函数&自定义函数_两种 2.2 自定义函数背景 3、Spark原生自定义UDF函数3.1 自定义函数流程&#x…

presto不支持concat_ws

在sparksql/hive中&#xff0c;将一个数据集合已指定的分隔符拼接可以用concat_ws&#xff0c;但是在presto中没有这个函数&#xff0c;不过presto提供了一个集合方法array_join&#xff0c;来达到相同的目的 同样的对数据集去重可以用array_distinct 如果你不需要去重就直接…

【日常小记】Ubuntu启动后无图形界面且网络配置消失

【日常小记】Ubuntu启动后无图形界面且网络配置消失 解决方法&#xff1a; 1. 输入后恢复网络: #sudo dhclient 2. 重新安装ubuntu-desktop #sudo apt-get install ubuntu-desktop&#xff01;&#xff01;&#xff01;请关注是否能ping通某网站&#xff08;例如百度&…

01、kafka知识点综合

kafka是一个优秀大吞吐消息队列&#xff0c;下面我就从实用的角度来讲讲kafka中&#xff0c;“kafka为何有大吞吐的机制”&#xff0c;“数据不丢失问题”&#xff0c;“精准一次消费问题” 01、kafka的架构组织和运行原理 kafka集群各个节点的名称叫broker&#xff0c;因为kaf…

【ArcGIS微课1000例】0137:色彩映射表转为RGB全彩模式

本文讲述ArcGIS中,将tif格式的影像数据从色彩映射表转为RGB全彩模式。 参考阅读:【GlobalMapper精品教程】093:将tif影像色彩映射表(调色板)转为RGB全彩模式 文章目录 一、色彩映射表预览二、色彩映射表转为RGB全彩模式一、色彩映射表预览 加载配套数据包中的0137.rar中的…

Python教程丨Python环境搭建 (含IDE安装)——保姆级教程!

工欲善其事&#xff0c;必先利其器。 学习Python的第一步不要再加收藏夹了&#xff01;提高执行力&#xff0c;先给自己装好Python。 1. Python 下载 1.1. 下载安装包 既然要下载Python&#xff0c;我们直接进入python官网下载即可 Python 官网&#xff1a;Welcome to Pyt…

2025.1.13运算符重载和继承

作业 #include <iostream> #include <cstring> using namespace std; //在之前做的mystring类的基础上&#xff0c;将能够重载的运算符全部进行重载class mystring { private:char *str;int size;public://无参构造mystring():size(10){str new char[size];str[0…

慧集通(DataLinkX)iPaaS集成平台-业务建模之业务对象(二)

3.UI模板 当我们选择一条已经建好的业务对象点击功能按钮【UI模板】进入该业务对象的UI显示配置界面。 右边填写的是UI模板的编码以及对应名称&#xff1b;菜单界面配置以业务对象UI模板编码获取显示界面。 3.1【列表-按钮】 展示的对应业务对象界面的功能按钮配置&#xff1…

springboot使用Easy Excel导出列表数据为Excel

springboot使用Easy Excel导出列表数据为Excel Easy Excel官网&#xff1a;https://easyexcel.opensource.alibaba.com/docs/current/quickstart/write 主要记录一下引入时候的pom&#xff0c;直接引入会依赖冲突 解决方法&#xff1a; <!-- 引入Easy Excel的依赖 -->&l…