【数学】概率论与数理统计(五)

文章目录

    • @[toc]
  • 二维随机向量及其分布
    • 随机向量
    • 离散型随机向量的概率分布律
      • 性质
      • 示例
        • 问题
        • 解答
    • 连续型随机向量的概率密度函数
    • 随机向量的分布函数
      • 性质
      • 连续型随机向量
        • 均匀分布
  • 边缘分布
    • 边缘概率分布律
    • 边缘概率密度函数
      • 二维正态分布
        • 示例
          • 问题
          • 解答
    • 边缘分布函数

二维随机向量及其分布


随机向量

  • 一般地,称 n n n个随机变量的整体 X = ( X 1 , X 2 , ⋯   , X n ) X = (X_{1}, X_{2}, \cdots, X_{n}) X=(X1,X2,,Xn) n n n维随机向量

离散型随机向量的概率分布律

  • 设二维离散型随机向量 ( X , Y ) (X, Y) (X,Y)的所有可能取值的集合为 G = {   ( x i , y j ) , i , j = 1 , 2 , ⋯   } G = \set{(x_{i}, y_{j}) , i, j = 1, 2, \cdots} G={(xi,yj),i,j=1,2,},并记 ( X , Y ) (X, Y) (X,Y)取各个可能取值的概率为 p i j = P {   X = x i , Y = y j   } , i , j = 1 , 2 , ⋯ p_{ij} = P\set{X = x_{i} , Y = y_{j}} , i, j = 1, 2, \cdots pij=P{X=xi,Y=yj},i,j=1,2,,称为二维离散型随机向量 ( X , Y ) (X, Y) (X,Y)的概率分布律,或称为 X X X Y Y Y的联合分布律

1

性质

  • p i j ≥ 0 ( i , j = 1 , 2 , ⋯   ) p_{ij} \geq 0 (i, j = 1, 2, \cdots) pij0(i,j=1,2,)

  • ∑ i ∑ j p i j = 1 \sum\limits_{i}\sum\limits_{j}{p_{ij}} = 1 ijpij=1

  • 满足上述 2 2 2个性质的数集 {   p i j , i , j = 1 , 2 , ⋯   } \set{p_{ij} , i, j = 1, 2, \cdots} {pij,i,j=1,2,}必可构成某二维离散型随机向量的一个分布律

示例

问题
  • 某盒内放有 12 12 12个大小相同的球,其中 5 5 5个红球, 4 4 4个白球, 3 3 3个黑球,第一次随机地摸出 2 2 2个球,观察后不放回,第二次再取出 3 3 3个球,以 X i X_{i} Xi表示第 i i i次取到红球的数目, i = 1 , 2 i = 1, 2 i=1,2,求 ( X 1 , X 2 ) (X_{1}, X_{2}) (X1,X2)的分布律
解答
  • P {   X 1 = i , X 2 = j   } = P {   X 1 = i   } P {   X 2 = j ∣ X 1 = i   } = C 5 i C 7 2 − i C 12 2 × C 5 − i j C 5 + i 3 − j C 10 3 ( i = 0 , 1 , 2 , j = 0 , 1 , 2 , 3 ) P\set{X_{1} = i , X_{2} = j} = P\set{X_{1} = i} P\set{X_{2} = j | X_{1} = i} = \frac{C_{5}^{i} C_{7}^{2 - i}}{C_{12}^{2}} \times \frac{C_{5 - i}^{j} C_{5 + i}^{3 - j}}{C_{10}^{3}} (i = 0, 1, 2 , j = 0, 1, 2, 3) P{X1=i,X2=j}=P{X1=i}P{X2=jX1=i}=C122C5iC72i×C103C5ijC5+i3j(i=0,1,2,j=0,1,2,3)

连续型随机向量的概率密度函数

  • 设二维随机向量 ( X , Y ) (X, Y) (X,Y),若存在非负可积函数 f ( x , y ) ( − ∞ < x , y < + ∞ ) f(x, y) (- \infty < x, y < + \infty) f(x,y)(<x,y<+),使得对任意实数对 a 1 ≤ b 1 a_{1} \leq b_{1} a1b1 a 2 ≤ b 2 a_{2} \leq b_{2} a2b2都有 P {   a 1 ≤ X ≤ b 1 , a 2 ≤ Y ≤ b 2   } = ∫ a 1 b 1 ∫ a 2 b 2 f ( x , y ) d x d y P\set{a_{1} \leq X \leq b_{1} , a_{2} \leq Y \leq b_{2}} = \int_{a_{1}}^{b_{1}}\int_{a_{2}}^{b_{2}}{f(x, y) dx dy} P{a1Xb1,a2Yb2}=a1b1a2b2f(x,y)dxdy,则称 ( X , Y ) (X, Y) (X,Y)为二维连续型随机向量,称 f ( x , y ) f(x, y) f(x,y) ( X , Y ) (X, Y) (X,Y)的概率密度函数或 X X X Y Y Y的联合概率密度函数,简称联合概率密度

随机向量的分布函数

  • ( X , Y ) (X, Y) (X,Y)是二维随机向量,对于任意实数 x x x y y y,称二元函数 F ( x , y ) = P {   X ≤ x , Y ≤ y   } F(x, y) = P\set{X \leq x , Y \leq y} F(x,y)=P{Xx,Yy}为二维随机向量 ( X , Y ) (X, Y) (X,Y)的分布函数,或随机变量 X X X Y Y Y的联合分布函数
  • 对于任意的实数 x 1 x_{1} x1 x 2 x_{2} x2 y 1 y_{1} y1 y 2 y_{2} y2 x 1 < x 2 x_{1} < x_{2} x1<x2 y 1 < y 2 y_{1} < y_{2} y1<y2随机点 ( X , Y ) (X, Y) (X,Y)落入矩形区域 G = {   ( X , Y ) ∣ x 1 < X ≤ x 2 , y 1 < Y ≤ y 2   } G = \set{(X, Y) | x_{1} < X \leq x_{2} , y_{1} < Y \leq y_{2}} G={(X,Y)x1<Xx2,y1<Yy2}内的概率可由分布函数表示为 P {   x 1 < X ≤ x 2 , y 1 < Y ≤ y 2   } = F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) P\set{x_{1} < X \leq x_{2} , y_{1} < Y \leq y_{2}} = F(x_{2}, y_{2}) - F(x_{2}, y_{1}) - F(x_{1}, y_{2}) + F(x_{1}, y_{1}) P{x1<Xx2,y1<Yy2}=F(x2,y2)F(x2,y1)F(x1,y2)+F(x1,y1)

性质

  • F ( x , y ) F(x, y) F(x,y)对每个自变量是单调不减函数,即对任意固定的 y y y,若 x 1 < x 2 x_{1} < x_{2} x1<x2,则 F ( x 1 , y ) ≤ F ( x 2 , y ) F(x_{1}, y) \leq F(x_{2}, y) F(x1,y)F(x2,y)

  • F ( − ∞ , y ) = lim ⁡ x → − ∞ F ( x , y ) = 0 F(- \infty, y) = \lim\limits_{x \rightarrow - \infty}{F(x, y)} = 0 F(,y)=xlimF(x,y)=0

  • F ( x , y ) F(x, y) F(x,y)对每个自变量都是右连续的,即 F ( x + 0 , y ) = F ( x , y ) F(x + 0, y) = F(x, y) F(x+0,y)=F(x,y) F ( x , y + 0 ) = F ( x , y ) F(x, y + 0) = F(x, y) F(x,y+0)=F(x,y)

  • 对于任意的 ( x 1 , y 1 ) (x_{1}, y_{1}) (x1,y1) ( x 2 , y 2 ) (x_{2}, y_{2}) (x2,y2),若 x 1 < x 2 x_{1} < x_{2} x1<x2 y 1 < y 2 y_{1} < y_{2} y1<y2,则 F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) ≥ 0 F(x_{2}, y_{2}) - F(x_{2}, y_{1}) - F(x_{1}, y_{2}) + F(x_{1}, y_{1}) \geq 0 F(x2,y2)F(x2,y1)F(x1,y2)+F(x1,y1)0

连续型随机向量

  • 对于二维连续型随机向量 ( X , Y ) (X, Y) (X,Y),可以证明,若 D D D x O y xOy xOy平面上一个可度量的平面区域,则有 P {   ( X , Y ) ∈ D   } = ∬ D f ( x , y ) d x d y P\set{(X, Y) \in D} = \iint\limits_{D}{f(x, y) dx dy} P{(X,Y)D}=Df(x,y)dxdy

  • 若概率密度 f ( x , y ) f(x, y) f(x,y)在点 ( x , y ) (x, y) (x,y)处连续,则有 ∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) \frac{\partial^{2}{F(x, y)}}{\partial{x} \partial{y}} = f(x, y) xy2F(x,y)=f(x,y)

均匀分布
  • 设二维随机向量 ( X , Y ) (X, Y) (X,Y)的概率密度为

f ( x , y ) = { 1 S D , ( x , y ) ∈ D 0 , ( x , y ) ∉ D f(x, y) = \begin{cases} \cfrac{1}{S_{D}} , & (x, y) \in D \\ 0 , & (x, y) \notin D \end{cases} f(x,y)= SD1,0,(x,y)D(x,y)/D

  • 则称 ( X , Y ) (X, Y) (X,Y)服从区域 D D D上的均匀分布

边缘分布


边缘概率分布律

  • 二维离散型随机向量 ( X , Y ) (X, Y) (X,Y)的两个分量 X X X Y Y Y的概率分布律分别称为随机向量 ( X , Y ) (X, Y) (X,Y)关于 X X X Y Y Y的边缘概率分布律

  • p i ⋅ = P {   X = x i   } = ∑ j p i j ( i = 1 , 2 , ⋯   ) p_{i \cdot} = P\set{X = x_{i}} = \sum\limits_{j}{p_{ij}} (i = 1, 2, \cdots) pi=P{X=xi}=jpij(i=1,2,)

  • p ⋅ j = P {   Y = y j   } = ∑ i p i j ( j = 1 , 2 , ⋯   ) p_{\cdot j} = P\set{Y = y_{j}} = \sum\limits_{i}{p_{ij}} (j = 1, 2, \cdots) pj=P{Y=yj}=ipij(j=1,2,)

  • 由联合分布律可以唯一确定边缘分布律,反之则不然


边缘概率密度函数

  • 二维连续型随机向量 ( X , Y ) (X, Y) (X,Y)关于其分量 X X X Y Y Y的概率密度分别记为 f X ( x ) f_{X}(x) fX(x) f Y ( y ) f_{Y}(y) fY(y),分别称 f X ( x ) f_{X}(x) fX(x) f Y ( y ) f_{Y}(y) fY(y) ( X , Y ) (X, Y) (X,Y)关于 X X X Y Y Y的边缘概率密度函数,简称边缘概率密度

  • f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f_{X}(x) = \int_{- \infty}^{+ \infty}{f(x, y) dy} fX(x)=+f(x,y)dy

  • f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x, y) dx} fY(y)=+f(x,y)dx

二维正态分布

  • 若二维连续型随机向量 ( X , Y ) (X, Y) (X,Y)的概率密度为

f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp ⁡ { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } ( − ∞ < x < + ∞ , − ∞ < y < + ∞ ) f(x, y) = \cfrac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1 - \rho^{2}}} \exp\left\{- \cfrac{1}{2 (1 - \rho^{2})} \left[\cfrac{(x - \mu_{1})^{2}}{\sigma_{1}^{2}} - 2 \rho \cfrac{(x - \mu_{1}) (y - \mu_{2})}{\sigma_{1} \sigma_{2}} + \cfrac{(y - \mu_{2})^{2}}{\sigma_{2}^{2}}\right]\right\} (- \infty < x < + \infty , - \infty < y < + \infty) f(x,y)=2πσ1σ21ρ2 1exp{2(1ρ2)1[σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2]}(<x<+,<y<+)

  • 其中 μ 1 \mu_{1} μ1 μ 2 \mu_{2} μ2 σ 1 \sigma_{1} σ1 σ 2 \sigma_{2} σ2 ρ \rho ρ均为常数,且 σ 1 > 0 \sigma_{1} > 0 σ1>0 σ 2 > 0 \sigma_{2} > 0 σ2>0 ∣ ρ ∣ < 1 |\rho| < 1 ρ<1,则称 ( X , Y ) (X, Y) (X,Y)服从参数为 μ 1 \mu_{1} μ1 μ 2 \mu_{2} μ2 σ 1 2 \sigma_{1}^{2} σ12 σ 2 2 \sigma_{2}^{2} σ22 ρ \rho ρ的二维正态分布,记为 ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X, Y) \sim N(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho) (X,Y)N(μ1,μ2,σ12,σ22,ρ)
示例
问题
  • 求二维正态随机向量 ( X , Y ) (X, Y) (X,Y)关于 X X X Y Y Y的边缘概率密度
解答
  • ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 = ( y − μ 2 σ 2 − ρ x − μ 1 σ 1 ) 2 + ( 1 − ρ 2 ) ( x − μ 1 ) 2 σ 1 2 \frac{(x - \mu_{1})^{2}}{\sigma_{1}^{2}} - 2 \rho \frac{(x - \mu_{1}) (y - \mu_{2})}{\sigma_{1} \sigma_{2}} + \frac{(y - \mu_{2})^{2}}{\sigma_{2}^{2}} = (\frac{y - \mu_{2}}{\sigma_{2}} - \rho \frac{x - \mu_{1}}{\sigma_{1}})^{2} + (1 - \rho^{2}) \frac{(x - \mu_{1})^{2}}{\sigma_{1}^{2}} σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2=(σ2yμ2ρσ1xμ1)2+(1ρ2)σ12(xμ1)2

  • t = 1 1 − ρ 2 ( y − μ 2 σ 2 − ρ x − μ 1 σ 1 ) t = \frac{1}{\sqrt{1 - \rho^{2}}} (\frac{y - \mu_{2}}{\sigma_{2}} - \rho \frac{x - \mu_{1}}{\sigma_{1}}) t=1ρ2 1(σ2yμ2ρσ1xμ1) d y = σ 2 1 − ρ 2 d t dy = \sigma_{2} \sqrt{1 - \rho^{2}} dt dy=σ21ρ2 dt

f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y = 1 2 π σ 1 σ 2 1 − ρ 2 e − ( x − μ 1 ) 2 2 σ 1 2 ∫ − ∞ + ∞ e − 1 2 ( 1 − ρ ) 2 ( y − μ 2 σ 2 − ρ x − μ 1 σ 1 ) 2 d y = 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 ∫ − ∞ + ∞ e − t 2 2 d t = 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 , − ∞ < x < + ∞ \begin{aligned} f_{X}(x) &= \int_{- \infty}^{+ \infty}{f(x, y) dy} \\ &= \cfrac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1 - \rho^{2}}} e^{- \frac{(x - \mu_{1})^{2}}{2 \sigma_{1}^{2}}} \int_{- \infty}^{+ \infty}{e^{- \frac{1}{2 (1 - \rho)^{2}} (\frac{y - \mu_{2}}{\sigma_{2}} - \rho \frac{x - \mu_{1}}{\sigma_{1}})^{2}} dy} \\ &= \cfrac{1}{2 \pi \sigma_{1}} e^{- \frac{(x - \mu_{1})^{2}}{2 \sigma_{1}^{2}}} \int_{- \infty}^{+ \infty}{e^{- \frac{t^{2}}{2}} dt} \\ &= \cfrac{1}{\sqrt{2 \pi} \sigma_{1}} e^{- \frac{(x - \mu_{1})^{2}}{2 \sigma_{1}^{2}}} , - \infty < x < + \infty \end{aligned} fX(x)=+f(x,y)dy=2πσ1σ21ρ2 1e2σ12(xμ1)2+e2(1ρ)21(σ2yμ2ρσ1xμ1)2dy=2πσ11e2σ12(xμ1)2+e2t2dt=2π σ11e2σ12(xμ1)2,<x<+

  • 由此可知,二维正态分布的随机向量 ( X , Y ) (X , Y) (X,Y)关于 X X X Y Y Y的边缘分布都是正态分布,且若 ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X , Y) \sim N (\mu_{1} , \mu_{2} , \sigma_{1}^{2} , \sigma_{2}^{2} , \rho) (X,Y)N(μ1,μ2,σ12,σ22,ρ),则 X ∼ N ( μ 1 , σ 1 2 ) X \sim N (\mu_{1} , \sigma_{1}^{2}) XN(μ1,σ12) Y ∼ N ( μ 2 , σ 2 2 ) Y \sim N (\mu_{2} , \sigma_{2}^{2}) YN(μ2,σ22),由于边缘概率密度与参数 ρ \rho ρ无关,故对不同的二维正态分布,只要参数 μ 1 \mu_{1} μ1 μ 2 \mu_{2} μ2 σ 1 \sigma_{1} σ1 σ 2 \sigma_{2} σ2对应相同,那么它们的边缘分布都是相同的,这一事实表明,虽然 X X X Y Y Y的联合概率密度决定边缘密度,但反之不真

边缘分布函数

  • 二维随机向量 ( X , Y ) (X, Y) (X,Y)关于两个分量 X X X Y Y Y的分布函数分别记为 F X ( x ) F_{X}(x) FX(x) F Y ( y ) F_{Y}(y) FY(y),分别称之为随机向量 ( X , Y ) (X, Y) (X,Y)关于 X X X Y Y Y的边缘分布函数

  • F X ( x ) = P {   X ≤ x   } = P {   X ≤ x , Y < + ∞   } = lim ⁡ y → + ∞ F ( x , y ) = F ( x , + ∞ ) = ∫ − ∞ x [ ∫ − ∞ + ∞ f ( u , y ) d y ] d u F_{X}(x) = P\set{X \leq x} = P\set{X \leq x , Y < + \infty} = \lim\limits_{y \rightarrow + \infty}{F(x, y)} = F(x, + \infty) = \int_{- \infty}^{x}{\left[\int_{- \infty}^{+ \infty}{f(u, y) dy}\right] du} FX(x)=P{Xx}=P{Xx,Y<+}=y+limF(x,y)=F(x,+)=x[+f(u,y)dy]du


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/953225.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

mysql中创建计算字段

目录 1、计算字段 2、拼接字段 3、去除空格和使用别名 &#xff08;1&#xff09;去除空格 &#xff08;2&#xff09;使用别名&#xff1a;AS 4、执行算术计算 5、小结 博主用的是mysql8 DBMS&#xff0c;附上示例资料&#xff1a; 百度网盘链接: https://pan.baidu.co…

uniapp 之 uni-forms校验提示【提交的字段[‘xxx‘]在数据库中并不存在】解决方案

目录 场景问题代码结果问题剖析解决方案 场景 uni-forms官方组件地址 使用uniapp官方提供的组件&#xff0c;某个表单需求&#xff0c;单位性质字段如果是高校&#xff0c;那么工作单位则是高校的下拉选择格式&#xff0c;单位性质如果是其他的类型&#xff0c;工作单位则是手动…

【SH】Xiaomi9刷Windows10系统研发记录 、手机刷Windows系统教程、小米9重装win10系统

文章目录 参考资料云盘资料软硬件环境手机解锁刷机驱动绑定账号和设备解锁手机 Mindows工具箱安装工具箱和修复下载下载安卓和woa资源包第三方Recovery 一键安装Windows准备工作创建分区安装系统 效果展示Windows和Android一键互换Win切换安卓安卓切换Win 删除分区 参考资料 解…

苹果电脑怎么清理后台,提升苹果电脑运行速度

苹果电脑以其流畅的系统和高效的性能备受用户青睐&#xff0c;但即使是性能强大的Mac&#xff0c;随着使用时间的增长&#xff0c;也会遇到运行变慢、卡顿的问题。造成这种现象的一个主要原因是后台运行的程序和进程过多&#xff0c;占用了系统资源。那么&#xff0c;苹果电脑怎…

qt 快捷功能 快速生成 setter getter 构造函数 父类虚函数重写 成员函数实现 代码框架 查看父类及父类中的虚函数

qt 快速生成 setter getter 构造函数 父类虚函数重写 成员函数实现 代码框架 1、找到要实现的头文件 2、鼠标移动到在头文件中的类定义的类名上&#xff0c;右键进行选择。 这是插入父类虚函数(父类虚函数重写) 选项弹出来的结果。可以查看到所有父类及父类中的所有的虚函数

2_CSS3 背景 --[CSS3 进阶之路]

CSS3 中的背景属性提供了许多强大的功能来增强网页设计&#xff0c;包括但不限于多背景图像、渐变、背景大小控制等。以下是一些关键的 CSS3 背景属性及其用法示例。 1. 多重背景图像 CSS3 允许你为一个元素设置多个背景图像。这些图像按照它们在 background-image 属性中定义…

C++ ——— 内部类

目录 内部类的概念 内部类的特征 sizeof(外部类) 的大小 内部类的实例化 内部类就是外部类的友元 内部类的概念 如果一个类定义在另一个类的内部&#xff0c;这个内部类就叫做内部类&#xff0c;内部类是一个独立的类&#xff0c;它不属于外部类&#xff0c;更不能通过外…

03_Redis基本操作

1.Redis查询命令 1.1 官网命查询命令 为了便于学习Redis,官方将其用于操作不同数据类型的命令进行了分类整理。你可以通过访问Redis官方网站上的命令参考页面https://redis.io/commands来查阅这些分组的命令,这有助于更系统地理解和使用Redis的各项功能。 1.2 HELP查询命令…

深度解读微软Speech服务:让语音识别走进现实

大家好&#xff0c;今天我们来探讨一个激动人心的技术话题&#xff1a;微软的语音识别服务如何为我们提供强大的语音识别解决方案&#xff0c;特别是在电话录音中识别出不同的说话人。 场景描绘 想象一下&#xff0c;你有一段电话录音&#xff0c;并需要将其中的多个说话人区分…

mapbox基础,expressions表达式汇总

👨‍⚕️ 主页: gis分享者 👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍⚕️ 收录于专栏:mapbox 从入门到精通 文章目录 一、🍀前言二、🍀Expressions简介2.1 expressions 操作符2.1.1 Data expressions2.1.2 Camera expressions2.2 Expressi…

HTML中link的用法

一点寒芒先到&#xff0c;随后&#xff0c;抢出如龙&#xff01; 对于本人而言&#xff0c;这篇笔记内容有些扩展了&#xff0c;有些还未学到的也用上了&#xff0c;但是大概可以使用的明白&#xff0c;坚持下去&#xff0c;相信一定可以建设一个稳固的根基。 该文章为个人成…

宝塔面板 申请证书后 仍然提示不安全

证书显示有效&#xff0c;但是网站显示不安全 导致的原因是引入静态文件使用的是HTTP&#xff0c;查看方法为F12打开console控制台 可以看到静态文件全部都是HTTP 网站采用wordpress搭建&#xff0c;基于问题解决&#xff0c;其他方式搭建也是一样&#xff0c;处理掉所有的H…

Maven 中 scope=provided 和 optional=true 的区别

先说效果&#xff0c;maven依赖声明中加了<scope>provided</scope>&#xff0c;或者加了<optional>true</optional>&#xff0c;从效果上看是一样的&#xff0c;都会中断依赖传递&#xff0c;观察下图&#xff1a; 图中&#xff0c;项目B分别依赖了C和…

Linux标准IOday4

1:思维导图2: 创建2个子进程 父进程负责: 向文件中写入数据 2个子进程负责: 从文件中读取数据 要求: 一定保证1号子进程先读取&#xff0c;2号子进程后读取 使用文件IO去实现 #include <stdio.h>#include <string.h>#include <un…

Spring Boot教程之五十五:Spring Boot Kafka 消费者示例

Spring Boot Kafka 消费者示例 Spring Boot 是 Java 编程语言中最流行和使用最多的框架之一。它是一个基于微服务的框架&#xff0c;使用 Spring Boot 制作生产就绪的应用程序只需很少的时间。Spring Boot 可以轻松创建独立的、生产级的基于 Spring 的应用程序&#xff0c;您可…

ColorGATE 23系列的RIP软件

ColorGATE 23系列的RIP软件。ColorGATE是全球领先的用于无化学胶片生产的RIP软件&#xff0c;以下是对其特点和功能的介绍&#xff1a; 应用领域 适用于柔版、胶版和丝网印刷等领域&#xff0c;利用喷墨打印机进行无化学胶片生产&#xff0c;可应用于高端品质的印刷。 核心技…

Type-C双屏显示器方案

在数字化时代&#xff0c;高效的信息处理和视觉体验已成为我们日常生活和工作的关键需求。随着科技的进步&#xff0c;一款结合了便携性和高效视觉输出的设备——双屏便携屏&#xff0c;逐渐崭露头角&#xff0c;成为追求高效工作和娱乐体验人群的新宠。本文将深入探讨双屏便携…

51单片机 DS18B20温度储传感器

DS18B20温度传感器 64-BITROM&#xff1a;作为器件地址&#xff0c;用于总线通信的寻址&#xff0c;是唯一的&#xff0c;不可更改 SCRATCHPAD&#xff08;暂存器&#xff09;&#xff1a;用于总线的数据交互 EEPROM&#xff1a;用于保存温度触发阈值和配置参数 暂存器 单总线…

对话新晋 Apache SeaTunnel Committer:张圣航的开源之路与技术洞察

近日&#xff0c;张圣航被推选为 Apache SeaTunnel 的 Committer成员。带着对技术的热情和社区的责任&#xff0c;他将如何跟随 Apache SeaTunnel 社区迈向新的高度&#xff1f;让我们一起来聆听他的故事。 自我介绍 请您简单介绍一下自己&#xff0c;包括职业背景、当前的工作…

Linux渗透实战之Hackademic: RTB1靶场提权

0x1 前言 一、浅谈 哈喽师傅们&#xff0c;这次又到了给师傅们分享文章的时候了&#xff0c;这篇文章呢主要是给师傅们以vulnhub中的Hackademic: RTB1靶场&#xff0c;开始使用nmap进行相关渗透测试的操作&#xff0c;端口、目录扫描&#xff0c;得到一个静态的html页面&…