滑动窗口限流算法是一种基于时间窗口的流量控制策略,它将时间划分为固定大小的窗口,并在每个窗口内记录请求次数。通过动态滑动窗口,算法能够灵活调整限流速率,以应对流量的波动。
算法核心步骤
- 统计窗口内的请求数量:记录当前时间窗口内的请求次数。
- 应用限流规则:根据预设的阈值判断是否允许当前请求通过。
Redis有序集合的应用
Redis的有序集合(Sorted Set)为滑动窗口限流提供了理想的实现方式。每个有序集合的成员都有一个分数(score),我们可以利用分数来定义时间窗口。每当有请求进入时,将当前时间戳作为分数,并将请求的唯一标识作为成员添加到集合中。这样,通过统计窗口内的成员数量,即可实现限流。
实现细节
Redis命令简化
通过Redis的ZADD
命令,我们可以将请求的时间戳和唯一标识添加到有序集合中:
ZADD 资源标识 时间戳 请求标识
Java代码实现
以下是基于Java和Redis的滑动窗口限流实现:
public boolean isAllow(String key) {
ZSetOperations<String, String> zSetOperations = stringRedisTemplate.opsForZSet();
long currentTime = System.currentTimeMillis();
long windowStart = currentTime - period;
zSetOperations.removeRangeByScore(key, 0, windowStart);
Long count = zSetOperations.zCard(key);
if (count >= threshold) {
return false;
}
String value = "请求唯一标识(如:请求流水号、哈希值、MD5值等)";
zSetOperations.add(key, value, currentTime);
stringRedisTemplate.expire(key, period, TimeUnit.MILLISECONDS);
return true;
}
Lua脚本优化
为了确保在高并发场景下的原子性操作,我们可以将上述逻辑封装为Lua脚本:
local key = KEYS[1]
local current_time = tonumber(ARGV[1])
local window_size = tonumber(ARGV[2])
local threshold = tonumber(ARGV[3])
redis.call('ZREMRANGEBYSCORE', key, 0, current_time - window_size)
local count = redis.call('ZCARD', key)
if count >= threshold then
return tostring(0)
else
redis.call('ZADD', key, tostring(current_time), current_time)
return tostring(1)
end
完整Java代码
package com.example.demo.controller;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.core.ZSetOperations;
import org.springframework.data.redis.core.script.DefaultRedisScript;
import org.springframework.stereotype.Service;
import java.util.Collections;
import java.util.concurrent.TimeUnit;
@Service
public class SlidingWindowRatelimiter {
private long period = 60 * 1000; // 1分钟
private int threshold = 3; // 3次
@Autowired
private StringRedisTemplate stringRedisTemplate;
public boolean isAllow(String key) {
ZSetOperations<String, String> zSetOperations = stringRedisTemplate.opsForZSet();
long currentTime = System.currentTimeMillis();
long windowStart = currentTime - period;
zSetOperations.removeRangeByScore(key, 0, windowStart);
Long count = zSetOperations.zCard(key);
if (count >= threshold) {
return false;
}
String value = "请求唯一标识(如:请求流水号、哈希值、MD5值等)";
zSetOperations.add(key, value, currentTime);
stringRedisTemplate.expire(key, period, TimeUnit.MILLISECONDS);
return true;
}
public boolean isAllow2(String key) {
String luaScript = "local key = KEYS[1]\n" +
"local current_time = tonumber(ARGV[1])\n" +
"local window_size = tonumber(ARGV[2])\n" +
"local threshold = tonumber(ARGV[3])\n" +
"redis.call('ZREMRANGEBYSCORE', key, 0, current_time - window_size)\n" +
"local count = redis.call('ZCARD', key)\n" +
"if count >= threshold then\n" +
" return tostring(0)\n" +
"else\n" +
" redis.call('ZADD', key, tostring(current_time), current_time)\n" +
" return tostring(1)\n" +
"end";
long currentTime = System.currentTimeMillis();
DefaultRedisScript<String> redisScript = new DefaultRedisScript<>(luaScript, String.class);
String result = stringRedisTemplate.execute(redisScript, Collections.singletonList(key), String.valueOf(currentTime), String.valueOf(period), String.valueOf(threshold));
return "1".equals(result);
}
}
AOP实现限流
为了更方便地应用限流策略,我们可以通过AOP(面向切面编程)来拦截请求并应用限流规则。
自定义注解
首先,定义一个限流注解:
package com.example.demo.controller;
import java.lang.annotation.*;
@Documented
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface RateLimit {
long period() default 60; // 窗口大小(默认:60秒)
long threshold() default 3; // 阈值(默认:3次)
}
切面实现
然后,实现一个切面来拦截带有@RateLimit
注解的方法:
package com.example.demo.controller;
import jakarta.servlet.http.HttpServletRequest;
import lombok.extern.slf4j.Slf4j;
import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.core.ZSetOperations;
import org.springframework.stereotype.Component;
import java.util.concurrent.TimeUnit;
@Slf4j
@Aspect
@Component
public class RateLimitAspect {
@Autowired
private StringRedisTemplate stringRedisTemplate;
@Before("@annotation(rateLimit)")
public void doBefore(JoinPoint joinPoint, RateLimit rateLimit) {
long period = rateLimit.period();
long threshold = rateLimit.threshold();
HttpServletRequest httpServletRequest = ((ServletRequestAttributes) RequestContextHolder.getRequestAttributes()).getRequest();
String uri = httpServletRequest.getRequestURI();
Long userId = 123L; // 模拟获取用户ID
String key = "limit:" + userId + ":" + uri;
ZSetOperations<String, String> zSetOperations = stringRedisTemplate.opsForZSet();
long currentTime = System.currentTimeMillis();
long windowStart = currentTime - period * 1000;
zSetOperations.removeRangeByScore(key, 0, windowStart);
Long count = zSetOperations.zCard(key);
if (count >= threshold) {
throw new RuntimeException("请求过于频繁!");
} else {
zSetOperations.add(key, String.valueOf(currentTime), currentTime);
stringRedisTemplate.expire(key, period, TimeUnit.SECONDS);
}
}
}
使用注解
最后,在需要限流的方法上添加@RateLimit
注解:
@RestController
@RequestMapping("/hello")
public class HelloController {
@RateLimit(period = 30, threshold = 2)
@GetMapping("/sayHi")
public void sayHi() {
}
}
总结
通过Redis有序集合和Lua脚本,我们实现了一个高效且灵活的滑动窗口限流算法。结合AOP,我们可以轻松地将限流策略应用到具体的业务方法中。对于更复杂的流量控制需求,可以参考阿里巴巴的Sentinel框架。
参考链接:
- Sentinel官方文档
- AOP实现限流
- Redis Lua脚本