使用文章1(1.19)的粒子系的动力学方程求解力学系统,涉及很多力和加速度矢量,而使用拉格朗日方程则只需要计算两个标量:动能 T T T和势能 V V V(文章2式1.56)。
对于可采用拉格朗日表述的所有问题,我们所做的只是将 T T T和 V V V用广义坐标的形式表达出来,然后得到 L L L,代入拉格朗日方程。为此,我们需要将笛卡尔坐标转换为广义坐标的形式,即关系式 r i = r i ( q 1 , q 2 , . . . , q n , t ) {\bm r}_i = {\bm r}_i (q_1,q_2,...,q_n,t) ri=ri(q1,q2,...,qn,t)(设有n个独立的广义坐标),此时的速度为:
v i = ∂ r i ∂ q j q ˙ j + ∂ r i ∂ t {\bm v}_i = \frac{\partial {\bm r}_i}{\partial q_j} \dot{q}_j + \frac{\partial {\bm r}_i}{\partial t} vi=∂qj∂riq˙j+∂t∂ri
于是采用广义坐标表述的动能为:
T = 1 2 m i v i 2 = ∑ i 1 2 m i ( ∑ j ∂ r i ∂ q j q ˙ j + ∂ r i ∂ t ) 2 T = \frac{1}{2} m_i v_i^2 = \sum_i \frac{1}{2} m_i \left( \sum_j \frac{\partial {\bm r}_i}{\partial q_j} \dot{q}_j + \frac{\partial {\bm r}_i}{\partial t} \right)^2 T=21mivi2=i∑21mi(j∑∂qj∂riq˙j+∂t∂ri)2
进一步将上式展开:
T = ∑ i 1 2 m i ( ∂ r i ∂ t ) 2 + ∑ i m i ∑ j ∂ r i ∂ q j q ˙ j ∂ r i ∂ t + ∑ i 1 2 m i ( ∑ j ∂ r i ∂ q j q ˙ j ) ( ∑ k ∂ r i ∂ q k q ˙ k ) ( 1.71 ) \begin{aligned} &T = \sum_i \frac{1}{2} m_i \left( \frac{\partial {\bm r}_i}{\partial t} \right)^2\\ & + \sum_i m_i \sum_j \frac{\partial {\bm r}_i}{\partial q_j} \dot{q}_j \frac{\partial {\bm r}_i}{\partial t}\\ &+ \sum_i \frac{1}{2} m_i \left( \sum_j \frac{\partial {\bm r}_i}{\partial q_j} \dot{q}_j \right) \left( \sum_k \frac{\partial {\bm r}_i}{\partial q_k} \dot{q}_k \right) \end{aligned} \qquad (1.71) T=i∑21mi(∂t∂ri)2+i∑mij∑∂qj∂r