Matlab贝叶斯估计MCMC分析药物对不同种群生物生理指标数据评估可视化

全文链接:https://tecdat.cn/?p=38756

摘要:本文着重探讨了如何利用Matlab实现贝叶斯估计。阐述了具体的实现流程,涵盖数据加载、先验常数设定、马尔可夫链蒙特卡洛(MCMC)属性指定、模型构建、运行链条以及结果查看等环节,通过展示相应的代码示例及结果图,体现了Matlab在贝叶斯估计应用方面的作用和价值点击文末“阅读原文”获取完整代码数据)。

引言

贝叶斯估计在众多领域都占据着重要地位,它借助先验信息与样本数据对未知参数进行推断。Matlab凭借其强大的功能,为贝叶斯估计的实施提供了有力的平台支持,使得在该环境下进行贝叶斯估计相关操作变得便捷且高效。

在生物学中研究某种药物对不同种群生物的影响,通过收集不同种群生物在使用药物后的相关生理指标数据(代码中的y1y2所代表的数据),利用贝叶斯估计代码就能结合已有的关于该药物作用机制等先验知识(先验分布设定部分体现),对药物作用效果相关的关键参数(比如药物对不同种群平均作用强度mu、作用效果的波动程度sigma等)进行合理估计。借助 MCMC 模拟及结果分析,不仅能得到这些参数的后验分布情况,还能通过可视化的图形直观判断不同种群受药物影响的差异等情况,为进一步研发更有针对性的药物、优化治疗方案等提供有力依据。

Matlab贝叶斯估计概述

(一)贝叶斯定理

贝叶斯估计的核心理论依据是贝叶斯定理,其基本公式可以简单表示为:

b59f239b3ffddf015f9c89d9122b049b.png

其中,(P(\theta|x))被称为后验概率,它表示在给定观测数据 (x) 的情况下,参数 (\theta) 的概率分布,这也是贝叶斯估计最终想要得到的结果。(P(x|\theta)) 是似然函数,反映了在参数 (\theta) 取值确定的情况下,观测到数据 (x) 的概率。(P(\theta)) 是先验概率,体现了在没有观测数据之前,我们对参数 (\theta) 的认知或者主观判断。而 (P(x)) 是证据因子,通常作为一个归一化常数,确保后验概率的积分为 1。
在实际应用中,贝叶斯估计就是利用先验概率结合似然函数,通过贝叶斯定理来更新对参数的认知,得到后验概率分布,以此来对未知参数进行推断。

(二)先验分布的选择

先验分布 (P(\theta)) 的选择至关重要,它会影响最终后验分布的结果。常见的先验分布有均匀分布、正态分布、伽马分布等。
比如选择均匀分布作为先验时,意味着在参数的取值范围内,各个取值的可能性是相等的,这体现了对参数没有特别偏向的先验认知;而选择正态分布作为先验,往往是基于以往经验或者理论认为参数大概率会围绕某个均值附近波动。不同的先验分布选择需要根据实际问题背景、已有的知识储备以及对参数的大致预期等来综合确定。

(三)马尔可夫链蒙特卡洛(MCMC)方法

在贝叶斯估计中,通常很难直接求出后验分布的解析表达式,这时候就需要借助一些数值计算方法来进行近似求解,MCMC方法就是其中非常重要的一种。
MCMC方法的基本思想是通过构建一个马尔可夫链,使得该链的平稳分布就是我们要求的后验分布。它通过不断地在参数空间进行随机抽样,经过足够多的迭代后,所得到的样本就可以近似看作是来自后验分布的样本。常用的MCMC算法有Metropolis-Hastings算法、吉布斯采样(Gibbs Sampling)等。
例如Metropolis-Hastings算法,它通过设定一个建议分布来生成候选样本,然后按照一定的接受概率来决定是否接受这个候选样本进入马尔可夫链中。经过大量的迭代,链会逐渐收敛到平稳分布,也就是目标后验分布,从而可以利用这些抽样得到的样本进行统计分析,比如计算均值、方差等来估计参数。

药物对不同种群生物的影响分析

(一)数据加载

生物学中研究某种药物对不同种群生物的影响,通过收集不同种群生物在使用药物后的相关生理指标数据(代码中的y1y2所代表的数据) ,变量 x 代表着分组指示变量,用于区分不同种群生物这一关键分组信息:

%% 加载一些数据
y1 = \[101,100,102,104,1......
y = \[y1,y2\]; % 将数据合并成一个向量
x = \[ones(1,len)\]; % 组归属代码
nTotal = length(y);

上述代码首先定义了两组示例数据y1y2,接着通过将y1y2合并成y向量,以及创建表示组归属的x向量等操作,完成了数据的准备工作,nTotal则记录了总的数据长度,为后续分析做铺垫。

(二)先验常数指定

%% 指定先验常数,伽马分布的形状和比率
mu1PriorSD = std(y)*5; % 较平坦的先验

% 现在获取伽马分布的形状和比率

% 将先验常数保存在一个结构体中,以便后续使用
dataList = struct('y',y,'x',x,'nTotal',nTotal,...
 'mu1PriorMean',mu1PriorMean,'mu1PriorSD',mu1PriorS

这部分代码主要是设定先验相关的常数,比如均值、标准差等。像mu1PriorMean等变量是通过对数据y计算均值、标准差等方式来确定先验的一些参数情况。然后利用自定义函数mbe_gammaShRa来获取伽马分布的形状和比率参数,最后将这些先验相关的参数整合到结构体dataList中,方便后续操作中调用。

(三)MCMC属性指定及链条运行

%% 指定MCMC属性
% 每个链条保存的MCMC步骤数
% 这与其他类似情况不同,在其他情况中,可能需要一起定义所有链条要保存的步骤数(在此示例中为12000)
numSavedSteps = 4000;
% 独立的MCMC链条数量
nChains = 3;
% 进行稀疏处理的步骤数,在运行过程中将只保留每隔n步的步骤。这不会影响保存的步骤数。即,为了计算10000个保存的步骤,实际运行时将计算50000个步骤
% 如果内存不是问题,建议使用更长的链条,并且根本不进行稀疏处理
thinSteps = 5;....

首先指定了MCMC的一些关键属性,比如要保存的步骤数numSavedSteps、链条数量nChains、稀疏处理的步长thinSteps以及预烧期样本数量burnInSteps等,这些参数对于后续MCMC模拟的质量和效率等方面有着重要影响。接着初始化链条,根据已有数据来设定如musigma等的初始值,并为每个链条设置好潜在变量的初始值存放在initsList中。然后构建模型,将其以文本形式保存到文件中,最后利用matjags结合相关参数来运行链条,得到模拟的样本等结果。

(四)结果查看与分析

通过调用mbegMCMC函数可以对链条进行诊断分析,运行此代码后会得到相应的图形,例如:
fca7d07775c76febc2471d928a9971bd.jpeg


点击标题查阅往期内容

cc71446454ab632ae361127fa66fbced.jpeg

数据分享|R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病

outside_default.png

左右滑动查看更多

outside_default.png

01

f8cbd794e28949221fc3191d88a38c2a.png

02

fddc76222fb75c6203470b5cc2c13f8e.png

03

c52886c30d446b089552f8cdfaa9ebc4.png

04

190c49f1690cb9808863396a93dc2d7b.png

从图中可以直观地观察链条的一些特性等情况,辅助判断模拟是否合理等。

%% 分析结果
% 此时,希望一次性使用所有链条,所以首先需要将各个链条连接成一个长链条
mcmcChain = m
% 获取汇总信息并绘制相关图形
summary = mbe
% 准备数据格式
data{1} = y1;
data{2} = y2;
mbs(data,mcmcChain);

这部分代码先是将各个链条连接起来,便于后续统一分析。然后利用相关函数获取结果的汇总信息,并且通过特定函数绘制相应图形,像以下这些示例图:
12dd7c06b7af4458801d35e25c8d92a7.png24802fc730e3ed1430bcf70e6cf104de.jpeg
7864f7ff81f8bd802daeb00972578964.jpeg
通过这些图形,可以直观地看到参数的分布情况,进而帮助我们更好地理解贝叶斯估计的结果,为后续基于这些结果进行进一步分析等提供依据。

总结

本文详细介绍了利用Matlab实现贝叶斯估计的相关流程,通过代码示例展示了从数据加载、先验设定、MCMC模拟到结果查看的完整过程。Matlab在贝叶斯估计应用中有着良好的实用性,能帮助使用者便捷地开展相关分析,并且借助图形展示让结果更加直观易懂。不过在实际应用中,使用者还需依据具体的数据特性和分析需求,合理地调整诸如先验参数、MCMC属性等关键设置,以获取更精准、可靠的贝叶斯估计结果。随着相关技术的不断发展,相信Matlab在贝叶斯估计方面的应用会更加完善,应用场景也会进一步拓展。

26ea02806d92c300473bcb7026178a56.jpeg

本文中分析的数据、代码分享到会员群,扫描下面二维码即可加群! 

aaa555f02c758e63a68604dfb9c0b326.png


资料获取

在公众号后台回复“领资料”,可免费获取数据分析、机器学习、深度学习等学习资料。

f97703f7d0583ab3b861095858728c59.jpeg

点击文末“阅读原文”

获取全文完整代码数据资料。

本文选自《Matlab贝叶斯估计MCMC分析药物对不同种群生物生理指标数据评估可视化》。

点击标题查阅往期内容

WinBUGS对多元随机波动率SV模型:贝叶斯估计与模型比较

数据分享|R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病

贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据

R语言中贝叶斯网络(BN)、动态贝叶斯网络、线性模型分析错颌畸形数据

使用贝叶斯层次模型进行空间数据分析

MCMC的rstan贝叶斯回归模型和标准线性回归模型比较

python贝叶斯随机过程:马尔可夫链Markov-Chain,MC和Metropolis-Hastings,MH采样算法可视化

Python贝叶斯推断Metropolis-Hastings(M-H)MCMC采样算法的实现

matlab贝叶斯隐马尔可夫hmm模型实现

贝叶斯线性回归和多元线性回归构建工资预测模型

Metropolis Hastings采样和贝叶斯泊松回归Poisson模型

贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据

R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据

R语言STAN贝叶斯线性回归模型分析气候变化影响北半球海冰范围和可视化检查模型收敛性

PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像

贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据

R语言JAGS贝叶斯回归模型分析博士生延期毕业完成论文时间

R语言Metropolis Hastings采样和贝叶斯泊松回归Poisson模型

Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户

R语言贝叶斯MCMC:用rstan建立线性回归模型分析汽车数据和可视化诊断

R语言贝叶斯MCMC:GLM逻辑回归、Rstan线性回归、Metropolis Hastings与Gibbs采样算法实例

R语言贝叶斯Poisson泊松-正态分布模型分析职业足球比赛进球数

随机森林优化贝叶斯预测分析汽车燃油经济性

R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病

R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数

R语言中的block Gibbs吉布斯采样贝叶斯多元线性回归

Python贝叶斯回归分析住房负担能力数据集

R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析

Python用PyMC3实现贝叶斯线性回归模型

R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型

R语言Gibbs抽样的贝叶斯简单线性回归仿真分析

R语言和STAN,JAGS:用RSTAN,RJAG建立贝叶斯多元线性回归预测选举数据

R语言基于copula的贝叶斯分层混合模型的诊断准确性研究

R语言贝叶斯线性回归和多元线性回归构建工资预测模型

R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

R语言stan进行基于贝叶斯推断的回归模型

R语言中RStan贝叶斯层次模型分析示例

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化

R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型

WinBUGS对多元随机波动率模型:贝叶斯估计与模型比较

R语言实现MCMC中的Metropolis–Hastings算法与吉布斯采样

R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化

视频:R语言中的Stan概率编程MCMC采样的贝叶斯模型

R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计

43971bf92f9da040dfdb91ecc2e1cfa6.jpeg

324e1b373bb8128584ab665c874ab009.png

4163f4dbc31b8474ef921ec3f0ec0f5a.png

ea9299990d367980c2c74392ba520308.jpeg

1e16965f5993db9f47d5453d185d0c5d.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/950481.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

js:日期对象和dom节点

日期对象 事件对象在前端开发里经常用来表示日期: 可以获取当前系统的时间 实例化 使用new关键字来实例化一个对象: const date new Date()console.log(date); 获取当前时间 const date new Date(2008-8-8)console.log(date); 获取指定时间 写得…

Ⅱ.INTRODUCTION TO CUDA C (CUDA C 入门)

前言 上一节环境配置好了,我们开始吧! 一、A First Program 1. Hello, World! 我们先写一个C语言的 Hello, World! 作为对比 int main(void){printf("Hello, World!\n");return 0; }大家应该知道这个代码运行在CPU上吧,我们CP…

rsync如何实时同步

一、准备rsyncd服务环境 backup服务器&#xff08;rsync服务端&#xff09; 1、恢复了快照&#xff0c;重新安装rsync服务端 2、快速的部署rsyncd服务端 #!/bin/bash yum install rsync -ycat > /etc/rsyncd.conf << EOF uid www gid www port 873 fake supe…

Python的Matplotlib库应用(超详细教程)

目录 一、环境搭建 1.1 配置matplotlib库 1.2 配置seaborn库 1.3 配置Skimage库 二、二维图像 2.1 曲线&#xff08;直线&#xff09;可视化 2.2 曲线&#xff08;虚线&#xff09;可视化 2.3 直方图 2.4 阶梯图 三、三维图像 3.1 3D曲面图 3.2 3D散点图 3.3 3D散…

vue之element-ui文件上传(二)

一、点击上传&#xff0c;使用默认的action上传&#xff0c;添加校验&#xff0c;上传成功后&#xff0c;去除校验&#xff1a; <el-form-item label"文件md5" prop"fileMd5"><el-uploadv-if"!form.fileMd5"v-model"form.fileMd5&…

java项目之旅游网站的设计与实现(源码+文档)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的旅游网站的设计与实现。 项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 基于SpringBoot的…

IOS开发如何从入门进阶到高级

针对iOS开发的学习&#xff0c;不同阶段应采取不同的学习方式&#xff0c;以实现高效提升.本文将iOS开发的学习分为入门、实战、进阶三个阶段&#xff0c;下面分别详细介绍. 一、学习社区 iOS开源中国社区 这个社区专注于iOS开发的开源项目分享与协作&#xff0c;汇集了大量开…

ubuntu编译ijkplayer,支持rmvb以及mkv

1. 准备环境 sudo apt-get update apt install gcc yasm cmake python p7zip-full vim pkg-config autoconf automake build-essential dos2unix mercurial cmake-curse-gui -y apt-get -y --force-yes install libass-dev libtheora-dev libtool libva-dev libvdpau-dev libv…

Ardupilot开源无人机之Geek SDK进展2024

Ardupilot开源无人机之Geek SDK进展202501 1. 源由2. 状态3. TODO3.1 跟踪目标框3.2 onnxruntime版本3.3 CUDA 11.8版本3.4 pytorch v2.5.1版本3.5 Inference性能3.6 特定目标集Training 4. 参考资料 1. 源由 前期搭建《Ardupilot开源无人机之Geek SDK》&#xff0c;主要目的是…

《Spring Framework实战》3:概览

欢迎观看《Spring Framework实战》视频教程 Spring Framework 为基于现代 Java 的企业应用程序提供了全面的编程和配置模型 - 在任何类型的部署平台上。 Spring 的一个关键要素是应用程序级别的基础设施支持&#xff1a;Spring 专注于企业应用程序的 “管道”&#xff0c;以便…

Linux初识——基本指令

我们在linux下输入各种指令&#xff0c;其实就相当于在windows中的相关操作&#xff0c;比如双击&#xff0c;新建文件夹等。 以下是相关基本指令基本用法 一.ls&#xff08;显示当前目录下的所有文件和目录&#xff09; 那如何显示当前目录&#xff08;我们所在的位置&…

小程序开发-页面事件之上拉触底实战案例

&#x1f3a5; 作者简介&#xff1a; CSDN\阿里云\腾讯云\华为云开发社区优质创作者&#xff0c;专注分享大数据、Python、数据库、人工智能等领域的优质内容 &#x1f338;个人主页&#xff1a; 长风清留杨的博客 &#x1f343;形式准则&#xff1a; 无论成就大小&#xff0c;…

医疗可视化大屏 UI 设计新风向

智能化交互 借助人工智能与机器学习技术&#xff0c;实现更智能的交互功能。如通过语音指令或手势控制来操作大屏&#xff0c;医护人员无需手动输入&#xff0c;可更便捷地获取和处理信息。同时&#xff0c;系统能根据用户的操作习惯和数据分析&#xff0c;自动推荐相关的医疗…

IT面试求职系列主题-Jenkins

想成功求职&#xff0c;必要的IT技能一样不能少&#xff0c;先说说Jenkins的必会知识吧。 1) 什么是Jenkins Jenkins 是一个用 Java 编写的开源持续集成工具。它跟踪版本控制系统&#xff0c;并在发生更改时启动和监视构建系统。 2&#xff09;Maven、Ant和Jenkins有什么区别…

力扣刷题:数组OJ篇(上)

大家好&#xff0c;这里是小编的博客频道 小编的博客&#xff1a;就爱学编程 很高兴在CSDN这个大家庭与大家相识&#xff0c;希望能在这里与大家共同进步&#xff0c;共同收获更好的自己&#xff01;&#xff01;&#xff01; 目录 1.消失的数字&#xff08;1&#xff09;题目描…

2024 高级爬虫笔记(六)scrapy框架基础知识

目录 一、Scrapy框架基础知识1.1、什么是scrapy&#xff1f;1.2、scrapy的工作流程1.3、scrapy中每个模块的作用&#xff1a;1.4、scrapy的入门使用1.4.1 安装scrapy1.4.2、scrapy项目实现流程1.4.3、创建scrapy项目1.4.4、创建爬虫1.4.5、完善spider1.4.6、配置settings文件1.…

每日一题-两个链表的第一个公共结点

文章目录 两个链表的第一个公共结点问题描述示例说明示例 1示例 2 方法及实现方法描述代码实现 复杂度分析示例运行过程示例 1示例 2 总结备注 两个链表的第一个公共结点 问题描述 给定两个无环的单向链表&#xff0c;找到它们的第一个公共节点。如果没有公共节点&#xff0c…

Elasticsearch:在 HNSW 中提前终止以实现更快的近似 KNN 搜索

作者&#xff1a;来自 Elastic Tommaso Teofili 了解如何使用智能提前终止策略让 HNSW 加快 KNN 搜索速度。 在高维空间中高效地找到最近邻的挑战是向量搜索中最重要的挑战之一&#xff0c;特别是当数据集规模增长时。正如我们之前的博客文章中所讨论的&#xff0c;当数据集规模…

两种方式实现Kepware与PLC之间的心跳检测

两种方式实现Kepware与PLC之间的心跳检测 实现Kepware与PLC之间的心跳检测1.OPCUA 外挂程序2.Kepware Advanced Tag 实现Kepware与PLC之间的心跳检测 1.OPCUA 外挂程序 这是通过上位程序来触发心跳的一种机制&#xff0c;在C#中&#xff0c;可以利用OPC UAOPCAutodll的方式…

python-leetcode-文本左右对齐

68. 文本左右对齐 - 力扣&#xff08;LeetCode&#xff09; class Solution:def fullJustify(self, words: List[str], maxWidth: int) -> List[str]:result []current_line []current_length 0for word in words:# 如果当前行加上这个单词后超过 maxWidth&#xff0c;则…