Netron可视化深度学习的模型框架,大大降低了大模型的学习门槛

深度学习是机器学习的一个子领域,灵感来源于人脑的神经网络。深度学习通过多层神经网络自动提取数据中的高级特征,能够处理复杂和大量的数据,尤其在图像、语音、自然语言处理等任务中表现出色。常见的深度学习模型:

  • 卷积神经网络(CNN):专注于处理图像数据的深度学习模型,广泛应用于计算机视觉任务,如图像分类、目标检测等。

卷积神经网络模型

  • 循环神经网络(RNN)和长短期记忆网络(LSTM):用于处理序列数据(如文本、语音),擅长学习时间序列中的依赖关系。

RNN 循环神经网络模型

  • Transformer:通过自注意力机制和并行计算,在自然语言处理等任务中取得了显著突破(如 BERT、GPT 等模型)。

transformer 模型框架

学习人工智能技术依然是当下的热点,无论是谁,都需要学习人工智能技术,就像当年的电脑时代一样,每个人都需要学习了解人工智能技术。但是学习技术的门槛比较高,特别是大模型的代码让人看起来,简直就是天书一样,本来代码就长,还堆叠了 N 个模型框架,且每个输入,输出的数据形状,简直让人头疼。

好在Netron把大模型的框架都使用可视化的方式呈现了出来,从输入,到输出,数据的每个步骤的流动,以及每个节点的数据维度与当前时间节点的计算名称都详细的罗列了出来,类似卷积的操作,从输入到输出,都是一条直线下来,光看代码也比较容易清晰。

但是碰到类似的大模型,其输入,输出节点如此之多,若只看代码的话,估计整个人都懵了。若下图展现出来,再配合着代码与模型框架,再去理解模型,是不是就容易轻松了。

Netron的官网也很简洁,只需要把自己的模型训练完成的模型,上传到Netron的网站,模型框架就会自动展现出来。目前支持ONNX, TensorFlow Lite, Core ML, Keras, Caffe, Darknet, MXNet, PaddlePaddle, ncnn, MNN, TensorFlow.js, Safetensors and NumPy.

这里我们编写一段 CNN 的代码,试试Netron可视化模型的魅力,运行以下代码,然后把模型保存成 onnx格式,得到模型文件后,就可以上传到Netron网站。

import torch
import torch.nn as nn
import torch.onnx
import torch.nn.functional as F 
# 假设我们有一个简单的卷积神经网络
class SimpleCNN(nn.Module):
   def __init__(self):
       super(SimpleCNN, self).__init__()
       self.conv1 = nn.Conv2d(1, 6, 5)
       self.pool = nn.MaxPool2d(2, 2)
       self.conv2 = nn.Conv2d(6, 16, 5)
       self.fc1 = nn.Linear(16 * 5 * 5, 120)  # 调整全连接层的输入维度
       self.fc2 = nn.Linear(120, 84)
       self.fc3 = nn.Linear(84, 10)
 
   def forward(self, x):
       x = self.pool(F.relu(self.conv1(x)))
       x = self.pool(F.relu(self.conv2(x)))
       x = x.view(-1, 16 * 5 * 5)  # 调整 view 的参数
       x = F.relu(self.fc1(x))
       x = F.relu(self.fc2(x))
       x = self.fc3(x)
       return x
# 创建模型实例
model = SimpleCNN()
# 设置模型为评估模式
model.eval()
# 创建一个示例输入张量
dummy_input = torch.randn(1, 1, 32, 32)  # 示例输入尺寸 (batch_size, channels, height, width)
# 导出模型
torch.onnx.export(model,               # 要导出的模型
                 dummy_input,         # 模型的示例输入
                 "simple_cnn.onnx",   # 输出文件名
                 export_params=True,  # 是否导出参数
                 opset_version=11,    # ONNX 的版本
                 do_constant_folding=True,  # 是否执行常量折叠优化
                 input_names=['input'],    # 输入节点名称
                 output_names=['output'],  # 输出节点名称
                 dynamic_axes={'input': {0: 'batch_size'},  # 动态轴
                               'output': {0: 'batch_size'}})
 
print("模型已成功导出为 ONNX 格式!")
'''
SimpleCNN 类继承自 nn.Module,这是所有 PyTorch 网络模型的基础类。
__init__ 方法中定义了网络的结构:
self.conv1:第一个卷积层,输入通道数为 1,输出通道数为 6,卷积核大小为 5x5。
self.pool:最大池化层,池化窗口大小为 2x2,步长为 2。
self.conv2:第二个卷积层,输入通道数为 6,输出通道数为 16,卷积核大小为 5x5。
self.fc1:第一个全连接层,输入维度为 16 * 5 * 5,输出维度为 120。
self.fc2:第二个全连接层,输入维度为 120,输出维度为 84。
self.fc3:输出层,输入维度为 84,输出维度为 10(假设是 10 类分类任务)。
 
forward 方法定义了数据在模型中的流动方式:
x = self.pool(F.relu(self.conv1(x))):对输入 x 进行第一层卷积操作,然后应用 ReLU 激活函数,再进行最大池化。
x = self.pool(F.relu(self.conv2(x))):对上一步的结果进行第二层卷积操作,同样应用 ReLU 激活函数,再进行最大池化。
x = x.view(-1, 16 * 5 * 5):将多维张量展平成一维张量,以便可以输入到全连接层。这里 -1 表示自动计算批量大小,16 * 5 * 5 是展平后的特征数量。
x = F.relu(self.fc1(x)):通过第一个全连接层,并应用 ReLU 激活函数。
x = F.relu(self.fc2(x)):通过第二个全连接层,并应用 ReLU 激活函数。
x = self.fc3(x):通过输出层,得到最终的输出。
'''

Netron展示了每个节点的计算过程以及名称,当然模型的每个步骤的数据维度,也清晰的展示了出来,这样我们学习大模型时,可以根据模型框架以及可视化过程来解析代码的执行过程,也可以通过可视化的模型框架,来学习数据的流向,以及 debug 模型。

https://github.com/lutzroeder/netron
https://netron.app/


更多transformer,VIT,swin tranformer
参考头条号:人工智能研究所
V:启示AI科技

 动画详解transformer  在线教程 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/950288.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python生成高级圣诞树-代码案例剖析

文章目录 👽发现宝藏 ❄️方块圣诞树🐬效果截图🌸代码-可直接运行🌴代码解析 ❄️线条圣诞树🐬效果截图🌸代码-可直接运行🌴代码解析 ❄️豪华圣诞树🐬效果截图🌸代码-可…

Flux“炼丹炉”——fluxgym安装教程

一、介绍 这个炼丹炉目前可以训练除了flux-dev之外的其它模型,只需更改一个配置文件内容即可。重要的是训练时不需要提前进行图片裁剪、打标等前置工作,只需下图的三个步骤即可开始训练。它就是——fluxgym。 fluxgym:用于训练具有低 VRAM &…

【PLL】非线性瞬态性能

频率捕获、跟踪响应,是大信号非线性行为锁相范围内的相位、频率跟踪,不是非线性行为 所以:跟踪,是线性区域;捕获,是大信号、非线性区域 锁定范围:没有周跳(cycle-slipping&#xff0…

OpenAI CEO 奥特曼发长文《反思》

OpenAI CEO 奥特曼发长文《反思》 --- 引言:从 ChatGPT 到 AGI 的探索 ChatGPT 诞生仅一个多月,如今我们已经过渡到可以进行复杂推理的下一代模型。新年让人们陷入反思,我想分享一些个人想法,谈谈它迄今为止的发展,…

“AI智慧语言训练系统:让语言学习变得更简单有趣

大家好,我是你们的老朋友,一个热衷于探讨科技与教育结合的产品经理。今天,我想和大家聊聊一个让语言学习变得不再头疼的话题——AI智慧语言训练系统。这个系统可是我们语言学习者的福音,让我们一起来揭开它的神秘面纱吧&#xff0…

一、二极管(应用篇)

1.5普通二极管应用 1.5.1钳位电路 利用二极管的固定的导通电压,在二极管处并联用电器,达到用电器的工作电压相对稳定。如果电源处有尖峰电压,则可以通过二极管导入到5v的电源内,防止此尖峰电压干扰用电器 ,起到对电路的…

Android Studio 安装配置(个人笔记)

Android studio安装的前提是必须保证安装了jdk1.8版本以上 一、查看是否安装jdk cmd打开命令行,输入java -version 最后是一个关键点 输入 javac ,看看有没有相关信息 没有就下载jdk Android studio安装的前提是必须保证安装了jdk1.8版本以上 可以到…

unity学习14:unity里的C#脚本的几个基本生命周期方法, 脚本次序order等

目录 1 初始的C# 脚本 1.1 初始的C# 脚本 1.2 创建时2个默认的方法 2 常用的几个生命周期方法 2.1 脚本的生命周期 2.1.1 其中FixedUpdate 方法 的时间间隔,是在这设置的 2.2 c#的基本语法别搞混 2.2.1 基本的语法 2.2.2 内置的方法名,要求更严…

node.js|浏览器插件|Open-Multiple-URLs的部署和使用,实现一键打开多个URL的强大工具

前言: 在整理各类资源的时候,可能会面临资源非常多的情况,这个时候我们就需要一款能够一键打开多个URL的浏览器插件了 说简单点,其实,迅雷就是这样的,但是迅雷是基于内置nginx浏览器实现的,并…

HTML 显示器纯色亮点检测工具

HTML 显示器纯色亮点检测工具 相关资源文件已经打包成html等文件,可双击直接运行程序,且文章末尾已附上相关源码,以供大家学习交流,博主主页还有更多Html相关程序案例,秉着开源精神的想法,望大家喜欢&#…

dbeaver导入导出数据库(sql文件形式)

目录 前言dbeaver导出数据库dbeaver导入数据库 前言 有时候我们需要复制一份数据库,可以使用dbeaver简单操作! dbeaver导出数据库 选中数据库右键->工具->转储数据库 dbeaver导入数据库 选中数据库右键->工具->执行脚本 mysql 默…

接口测试-postman(使用postman测试接口笔记)

一、设置全局变量 1. 点击右上角设置按钮-》打开管理环境窗口-》选择”全局“-》设置变量名称,初始值和当前值设置一样的,放host放拼接的url,key放鉴权那一串字符,然后保存-》去使用全局变量,用{{变量名称}}形式 二、…

enzymejest TDD与BDD开发实战

一、前端自动化测试需要测什么 1. 函数的执行逻辑,对于给定的输入,输出是否符合预期。 2. 用户行为的响应逻辑。 - 对于单元测试而言,测试粒度较细,需要测试内部状态的变更与相应函数是否成功被调用。 - 对于集成测试而言&a…

Flutter项目开发模版,开箱即用(Plus版本)

前言 当前案例 Flutter SDK版本:3.22.2 本文,是由这两篇文章 结合产出,所以非常建议大家,先看完这两篇: Flutter项目开发模版: 主要内容:MVVM设计模式及内存泄漏处理,涉及Model、…

Spring Boot - 日志功能深度解析与实践指南

文章目录 概述1. Spring Boot 日志功能概述2. 默认日志框架:LogbackLogback 的核心组件Logback 的配置文件 3. 日志级别及其配置配置日志级别3.1 配置文件3.2 环境变量3.3 命令行参数 4. 日志格式自定义自定义日志格式 5. 日志文件输出6. 日志归档与清理7. 自定义日…

IWOA-GRU和GRU时间序列预测(改进的鲸鱼算法优化门控循环单元)

时序预测 | MATLAB实现IWOA-GRU和GRU时间序列预测(改进的鲸鱼算法优化门控循环单元) 目录 时序预测 | MATLAB实现IWOA-GRU和GRU时间序列预测(改进的鲸鱼算法优化门控循环单元)预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现IWOA-GRU和GRU时间序列预测…

【SpringBoot】日志处理-异常日志(Logback)

文章目录 异常日志(Logback)1、将 logback-spring.xml 文件放入项目的 src/main/resources 目录下2、配置 application.yml 文件3、使用 Logback 记录日志 异常日志(Logback) 使用 Logback 作为日志框架时,可以通过配…

【RK3568笔记】Android修改开机动画

概述 Android 的开机动画是由一系列连续的 PNG 图片作为帧组成的动画形式,不是一张 GIF 图片。将各帧 PNG 图片以压缩方式进行保存(压缩方式要求是存储压缩),并将保存的文件名命名为 bootanimation.zip,这个 bootanim…

复合机器人助力手机壳cnc加工向自动化升级

在当今竞争激烈的制造业领域,如何提高生产效率、降低成本、提升产品质量,成为众多企业面临的关键挑战。尤其是在手机壳 CNC 加工这一细分行业,随着市场需求的持续增长,对生产效能的要求愈发严苛。而复合机器人的出现,正…

HTML——75. 内联框架

<!DOCTYPE html> <html><head><meta charset"UTF-8"><title>内联框架</title><style type"text/css">iframe{width: 100%;height: 500px;}</style></head><body><!--iframe元素会创建包含…