009:传统计算机视觉之边缘检测

本文为合集收录,欢迎查看合集/专栏链接进行全部合集的系统学习。

合集完整版请参考这里。

本节来看一个利用传统计算机视觉方法来实现图片边缘检测的方法。

什么是边缘检测?

边缘检测是通过一些算法来识别图像中物体之间或者物体与背景之间的边界,也就是边缘。

图像边缘通常是图像中灰度变化显著的地方,标志着不同区域的分界线。

在一张图像中,边缘可以是物体的实际边界,也可以是纹理、颜色或亮度等特征变化比较明显的位置。

边缘检测有助于提取图像的结构信息,是许多计算机视觉和图像处理任务的基础,例如物体识别、图像分割和目标跟踪。

比如下面这张图片,我用红笔粗略的画出了一些物体的边缘,猫耳朵和背景很明显的边缘,椅子和背景以及椅子和猫咪的边缘等。

在这里插入图片描述

常见的边缘检测算法

实现图片的边缘检测的算法有很多,常见的边缘检测算法包括:

  • Sobel算子: 通过卷积图像和Sobel核,检测图像中的垂直和水平边缘。

  • Prewitt算子: 类似于Sobel,也是一种常用的边缘检测方法。

  • Canny边缘检测: 结合了多个步骤,包括高斯平滑、梯度计算和非极大值抑制,是一种广泛使用的边缘检测算法。

  • Laplacian算子: 通过对图像进行拉普拉斯运算,突出图像中的边缘。

  • 基于机器学习的方法: 利用深度学习中的卷积神经网络(CNN)等技术,可以学习图像中的特征,进而进行边缘检测。

以上几种算法是常见的边缘检测算法,感兴趣的话可以深入研究,这里不详细说明每个算法的原理,但大致都是类似的过程:通过一个类似于前文讲述的高斯滤波的滤波器窗口,来对图像像素值进行运算,得到像素突变的地方,以此作为边缘。

只不过这些窗口中的数值是经过精心计算和设计的,使得这些专业的算法(比如Canny算法)对边缘检测更为有效。

利用 Canny 算子对图像进行边缘检测
下面使用 opencv 库中的 Canny 函数,也就是Canny 算子来完成边缘检测。

import cv2
import matplotlib.pyplot as plt
# 读取图像
image = cv2.imread('cat.png', cv2.IMREAD_GRAYSCALE)

# 使用 Canny 算子进行边缘检测
edges = cv2.Canny(image, 50, 150)  # 调整阈值以获得最佳效果
 
# 显示结果
plt.figure(figsize=(8, 4))
 
plt.subplot(1, 2, 1)
plt.imshow(image, cmap='gray')
plt.title('Original Image')
 
plt.subplot(1, 2, 2)
plt.imshow(edges, cmap='gray')
plt.title('Canny Edges')
 
plt.show()

在上面的例子中,使用 cv2.Canny 函数中的 Canny 边缘检测算法,然后使用 matplotlib 库显示原始图像和检测到的边缘的图像。在实际使用时,你可以通过调整 cv2.Canny 函数的阈值来获得最佳的检测效果。

阈值是做什么的?

cv2.Canny 函数中的两个阈值参数指的是低阈值(threshold1)和高阈值(threshold2)。这两个阈值用于确定图像中的边缘。

  • 低阈值 (threshold1): 用于标识边缘像素的梯度值低于这个阈值的情况。这些像素将被认为不是边缘。如果某个像素的梯度值超过了低阈值,它将被标记为可能的边缘。

  • 高阈值 (threshold2): 用于边缘像素的梯度值高于这个阈值的情况。这些像素将被视为强边缘。如果某个像素的梯度值介于低阈值和高阈值之间,它将被标记为弱边缘。

在实践中,选择一个适当的高低阈值可以确保正确检测出图像中的边缘,这两个阈值的选择可能会因图像的特性而异,需要进行一些试验和调整。

下面是对一张图片进行边缘检测的效果,可以看到大量的边缘已经被检测出来了。
在这里插入图片描述

为什么要将图像转换为灰度图来做边缘检测

将图像转换为灰度图的一个主要原因是降低计算的复杂性,同时保留关键的信息。RGB图像包含了红、绿、蓝三个通道的信息,而灰度图只包含强度信息。

  • 计算效率:灰度图像只有一个通道,相比于RGB图像的三个通道,处理灰度图像所需的计算量更小,这在图像处理和计算机视觉任务中很重要。

  • 降低复杂性:对于很多应用来说,颜色信息并不是关键。将图像转换为灰度图简化了图像的处理和分析过程。

  • 去除冗余信息:在某些情况下,颜色并不是任务关注的重点。例如,边缘检测和物体识别通常更关注于亮度变化而非颜色变化。

除此之外,还可以减少图片的内存占用,尽管如此,如果在一些任务中我们确实需要颜色信息,可以在边缘检测的基础上进一步处理,使得在RGB的彩色图片上完成边缘检测。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/948103.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java SpringBoot使用Apache POI导入导出Excel文件

点击下载《Java SpringBoot使用Apache POI导入导出Excel文件(源代码)》 1. Apache POI 简介 Apache POI 是一个强大的 Java 库,用于处理 Microsoft Office 文档,包括 Excel 文件(.xls 和 .xlsx)。在 Java Spring Boot 项目中&am…

基于Spring Boot的健康饮食管理系统

一、系统架构与技术栈 系统架构:系统通常采用典型的三层架构设计,分为表现层、业务逻辑层和数据访问层。表现层负责与用户进行交互,展示信息和接收用户输入;业务逻辑层处理系统的核心业务,如用户信息管理、饮食记录分…

Maven 详细配置:Maven 项目 POM 文件解读

Maven 是 Java 开发领域中广泛使用的项目管理和构建工具,通过其核心配置文件——POM(Project Object Model)文件,开发者能够定义项目的基本信息、依赖关系、插件配置以及构建生命周期等关键要素。POM 文件不仅是 Maven 项目的核心…

计算机网络 (23)IP层转发分组的过程

一、IP层的基本功能 IP层(Internet Protocol Layer)是网络通信模型中的关键层,属于OSI模型的第三层,即网络层。它负责在不同网络之间传输数据包,实现网络间的互联。IP层的主要功能包括寻址、路由、分段和重组、错误检测…

pip安装paddle失败

一、pip安装paddle失败,报错如下 Preparing metadata (setup.py) ... error error: subprocess-exited-with-error import common, dual, tight, data, prox ModuleNotFoundError: No module named common [end of output] 二、解决方法: 按照提示安装对…

计算机网络 (19)扩展的以太网

前言 以太网(Ethernet)是一种局域网(LAN)技术,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网技术不断演进,从最初的10Mbps到如今的10Gbps、25Gbps、40Gbps、100Gbps等,已成…

企业二要素如何用java实现

一、什么是企业二要素? 企业二要素,通过输入统一社会信用代码、企业名称或统一社会信用代码、法人名称,验证两者是否匹配一致。 二、企业二要素适用哪些场景? 例如:企业日常运营 1.文件与资料管理:企业…

企业三要素如何用PHP实现调用

一、什么是企业三要素? 企业三要素即传入的企业名称、法人名称、社会统一信用代码或注册号,校验此三项是否一致。 二、具体怎么样通过PHP实现接口调用? 下面我们以阿里云为例,通过PHP示例代码进行调用,参考如下&…

一份完整的软件测试报告如何编写?

在软件开发的过程中,测试是必不可少的环节。然而,测试报告往往是最被忽视的部分。你是否也曾在忙碌的测试工作后,面对一份模糊不清的测试报告感到头疼?一份清晰、完整且结构合理的测试报告,能够帮助团队快速了解软件的…

021-spring-springmvc-组件

SpringMVC的handMapping 比较重要的部分 比较重要的部分 比较重要的部分 关于组件的部分 这里以 RequestMappingHandlerMapping 为例子 默认的3个组件是: org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping org.springframework.web.servlet.mvc…

Golang的并发编程实战经验

## Golang的并发编程实战经验 并发编程是什么 并发编程是指程序的多个部分可以同时执行,这样可以提高程序的性能和效率。在Golang中,并发编程是通过goroutine来实现的,goroutine是一种轻量级线程,可以在一个程序中同时运行成千上万…

【时时三省】(C语言基础)常见的动态内存错误

山不在高,有仙则名。水不在深,有龙则灵。 ----CSDN 时时三省 对NULL指针的解引用操作 示例: malloc申请空间的时候它可能会失败 比如我申请一块非常大的空间 那么空间可能就会开辟失败 正常的话要写一个if(p=&#x…

计算机网络 (18)使用广播信道的数据链路层

一、广播信道的基本概念 广播信道是一种允许一个发送者向多个接收者发送数据的通信信道。在计算机网络中,广播信道通常用于局域网(LAN)内部的主机之间的通信。这种通信方式的主要优点是可以节省线路,实现资源共享。 二、广播信道数…

网络安全:路由技术

概述 路由技术到底研究什么内容 研究路由器寻找最佳路径的过程 路由器根据最佳路径转发数据包 知识点,重要OSRF,BGP1.静态路由原理 路由技术分类 静态路由和动态路由技术 静态路由:是第一代路由技术,由网络管理员手工静态写路由/路径告知路…

游戏引擎学习第72天

无论如何,我们今天有一些调试工作要做,因为昨天做了一些修改,结果没有时间进行调试和处理。我们知道自己还有一些需要解决的问题,却没有及时完成,所以我们想继续进行这些调试。对我们来说,拖延调试工作总是…

RP2K:一个面向细粒度图像的大规模零售商品数据集

这是一种用于细粒度图像分类的新的大规模零售产品数据集。与以往专注于相对较少产品的数据集不同,我们收集了2000多种不同零售产品的35万张图像,这些图像直接在真实的零售商店的货架上拍摄。我们的数据集旨在推进零售对象识别的研究,该研究具…

【Linux】传输层协议UDP

目录 再谈端口号 端口号范围划分 UDP协议 UDP协议端格式 UDP的特点 UDP的缓冲区 UDP注意事项 进一步深刻理解 再谈端口号 在上图中,有两个客户端A和B,客户端A打开了两个浏览器,这两个客户端都访问同一个服务器,都访问服务…

ReactiveStreams、Reactor、SpringWebFlux

注意: 本文内容于 2024-12-28 21:22:12 创建,可能不会在此平台上进行更新。如果您希望查看最新版本或更多相关内容,请访问原文地址:ReactiveStreams、Reactor、SpringWebFlux。感谢您的关注与支持! ReactiveStreams是…

window10同时安装mysql5.7和mysql8.4.X

前提:window10已经安装了mysql5.7想再安装个mysql8.4.x 步骤1:去官网下载mysql8.4.X https://dev.mysql.com/downloads/mysql/ 步骤2:解压后mysql根目录添加my.ini文件如下,注意端口改为3308(3306已经被mysql5.7占用…

VS2015中使用boost库函数时报错问题解决error C4996 ‘std::_Copy_impl‘

在VS2015中使用boost库函数buffer时遇到问题,其他函数定义均能执行,当加上bg::buffer(参数输入正确);语句后就报如下错误: 错误 C4996 std::_Copy_impl: Function call with parameters that may be unsafe - this call relies…