《机器学习》从入门到实战——逻辑回归

目录

一、简介

二、逻辑回归的原理

1、线性回归部分

2、逻辑函数(Sigmoid函数)

3、分类决策

 4、转换为概率的形式使用似然函数求解

5、对数似然函数

​编辑

6、转换为梯度下降任务

三、逻辑回归拓展知识

1、数据标准化

(1)、0~1标准化

(2)、Z标准化 

2、 交叉验证

K折交叉验证

3、过拟合、欠拟合

(1)、过拟合

(2)、欠拟合

4、正则化惩罚

5、混淆矩阵

四、总结


一、简介

机器学习中的逻辑回归是一种广泛使用的分类算法,尤其适用于二分类问题(也可以扩展到多分类问题)。它的核心思想是通过线性回归模型预测概率,然后使用逻辑函数(如 Sigmoid 函数)将概率映射到分类标签。

二、逻辑回归的原理

逻辑回归是在线性回归的基础上使得线性函数映射Sigmoid函数上从而达到分类的效果。

1、线性回归部分

 使用线性方程计算输入特征的加权和:

其中:

  • w0,w1,…,wnw0​,w1​,…,wn​ 是模型参数(权重)。

  • x1,x2,…,xnx1​,x2​,…,xn​ 是输入特征。

2、逻辑函数(Sigmoid函数)

将线性回归的结果 zz 映射到 [0, 1] 之间的概率值:

其中:

  • P(y=1∣x)P(y=1∣x) 是样本属于类别 1 的概率。

  • Sigmoid 函数的输出值越接近 1,表示样本属于类别 1 的概率越大。

3、分类决策

根据概率值进行预测:

整合:

 4、转换为概率的形式使用似然函数求解

5、对数似然函数

6、转换为梯度下降任务

求偏导

参数更新

三、逻辑回归拓展知识

1、数据标准化

(1)、0~1标准化

也叫离差标准化,是对原始数据的线性变换,使结果映射到[0,1]区间。

min(x)、max(x)分别代表样本的最小值和最大值。 

(2)、Z标准化 

这种方法基于原始数据的均值(mean)和标准差(stand ard deviation)进行数据的标准化。将A的原始值x使用z- score标准化到x'。

s为样本的标准差 。

2、 交叉验证

K折交叉验证

3、过拟合、欠拟合

(1)、过拟合

  • 定义:模型在训练集上表现很好,但在测试集上表现较差。

  • 原因

    • 模型过于复杂(例如,参数过多)。

    • 训练数据过少或噪声过多。

  • 解决方法

    • 增加训练数据。

    • 降低模型复杂度

    • 减少特征、使用正则化

(2)、欠拟合
  • 定义:模型在训练集和测试集上表现都不好。

  • 原因

    • 模型过于简单(例如,特征不足)。

    • 训练时间不足。

  • 解决方法

    • 增加特征或使用更复杂的模型。

    • 增加训练时间。

4、正则化惩罚

正则化是一种防止过拟合的技术,通过在损失函数中添加惩罚项来限制模型参数的大小。

 损失函数:

 正则化惩罚:

 正则化惩罚种类

5、混淆矩阵

混淆矩阵(Confusion Matrix)是用于评估分类模型性能的一种表格,特别适用于二分类和多分类问题。它展示了模型预测结果与真实标签之间的对比情况,帮助我们直观地分析分类模型的准确性、错误类型等。

对于二分类

  • 真正例 (True Positive, TP):模型正确预测为正类的样本。

  • 假正例 (False Positive, FP):模型错误预测为正类的样本(实际为负类)。

  • 假反例 (False Negative, FN):模型错误预测为负类的样本(实际为正类)。

  • 真反例 (True Negative, TN):模型正确预测为负类的样本。

 计算公式

  • 召回率(Recall)是分类模型评估中的一个重要指标,主要用于衡量模型在识别正类样本(即实际为正类的样本)时的表现。它反映了模型将正类样本正确分类的能力。
  • 特异度(Specificity)是分类模型评估中的一个重要指标,主要用于衡量模型在识别负类样本(即实际为负类的样本)时的表现。它反映了模型将负类样本正确分类的能力。
  • F1 分数(F1 Score)是分类模型评估中的一个重要指标,用于综合衡量模型的精确率(Precision)召回率(Recall)。它是精确率和召回率的调和平均值,旨在平衡两者,特别适用于正负样本分布不均衡的场景。 

四、总结

逻辑回归是一种简单但强大的分类算法,适用于线性可分或近似线性可分的数据。通过标准化、正则化和交叉验证等技术,可以进一步提升其性能。尽管逻辑回归对非线性数据的拟合能力有限,但在许多实际应用中仍然表现出色。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/947211.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JDK8源码分析Jdk动态代理底层原理

本文侧重分析JDK8中jdk动态代理的源码,若是想看JDK17源码分析可以看我的这一篇文章 JDK17源码分析Jdk动态代理底层原理-CSDN博客 两者之间有着略微的差别,JDK17在JDK8上改进了不少 目录 源码分析 过程 生成的代理类大致结构 本文侧重分析JDK8中jdk…

ZYNQ初识6(zynq_7010)clock时钟IP核

基于板子的PL端无时钟晶振,需要从PS端借用clock1(50M)晶振 接下去是自定义clock的IP核封装,为后续的simulation可以正常仿真波形,需要注意顶层文件的设置,需要将自定义的IP核对应的.v文件设置为顶层文件&a…

深度学习模型格式转换:pytorch2onnx(包含自定义操作符)

将PyTorch模型转换为ONNX(Open Neural Network Exchange)格式是实现模型跨平台部署和优化推理性能的一种常见方法。PyTorch 提供了多种方式来完成这一转换,以下是几种主要的方法: 一、静态模型转换 使用 torch.onnx.export() t…

GPU 进阶笔记(一):高性能 GPU 服务器硬件拓扑与集群组网

记录一些平时接触到的 GPU 知识。由于是笔记而非教程,因此内容不求连贯,有基础的同学可作查漏补缺之用 1 术语与基础 1.1 PCIe 交换芯片1.2 NVLink 定义演进:1/2/3/4 代监控1.3 NVSwitch1.4 NVLink Switch1.5 HBM (High Bandwidth Memory) 由…

在Unity中用Ab包加载资源(简单好抄)

第一步创建一个Editor文件夹 第二步编写BuildAb(这个脚本一点要放在Editor中因为这是一个编辑器脚本,放在其他地方可能会报错) using System.IO; using UnityEditor; using UnityEngine;public class BuildAb : MonoBehaviour {// 在Unity编…

【贪心算法】贪心算法七

贪心算法七 1.整数替换2.俄罗斯套娃信封问题3.可被三整除的最大和4.距离相等的条形码5.重构字符串 点赞👍👍收藏🌟🌟关注💖💖 你的支持是对我最大的鼓励,我们一起努力吧!😃&#x1f…

(五)人工智能进阶:基础概念解释

前面我们介绍了人工智能是如何成为一个强大函数。接下来,搞清损失函数、优化方法和正则化等核心概念,才能真正驾驭它! 1. 什么是网络模型? 网络模型就像是一个精密的流水线工厂,由多个车间(层&#xff0…

SpringMVC(二)原理

目录 一、配置Maven(为了提升速度) 二、流程&&原理 SpringMVC中心控制器 完整流程: 一、配置Maven(为了提升速度) 在SpringMVC(一)配置-CSDN博客的配置中,导入Maven会非…

2、redis的持久化

redis的持久化 在redist当中,高可用的技术包括持久化,主从复制,哨兵模式,集群。 持久化是最简单的高可用的方法,作用就是备份数据。即将数据保存到硬盘,防止进程退出导致数据丢失。 redis持久化方式&…

【算法】模拟退火算法学习记录

写这篇博客的原因是博主本人在看某篇文章的时候,发现自己只是知道SGD这个东西,但是到底是个啥不清楚,所以百度了一下,然后在通过博客学习的时候看到了退火两个字,想到了本科做数模比赛的时候涉猎过,就上bil…

Visual Point Cloud Forecasting enables Scalable Autonomous Driving——点云论文阅读(12)

此内容是论文总结,重点看思路!! 文章概述 这篇文章介绍了一个名为 ViDAR 的视觉点云预测框架,它通过预测历史视觉输入生成未来点云,作为自动驾驶的预训练任务。ViDAR 集成了语义、三维几何和时间动态信息,有效提升了感知、预测和规划等自动驾驶核心任务的性能。实验表明…

AI 将在今年获得“永久记忆”,2028美国会耗尽能源储备

AI的“永久记忆”时代即将来临 谷歌前CEO施密特揭示了AI技术的前景,他相信即将在2025年迎来一场伟大的变化。AI将实现“永久记忆”,改变我们与科技的互动过程。施密特将现有的AI上下文窗口比作人类的短期记忆,难以持久保存信息。他的设想是…

工控主板ESM7000/6800E支持远程桌面控制

英创公司ESM7000 是面向工业领域的双核 Cortex-A7 高性能嵌入式主板,ESM6800E则为单核Cortex-A7 高性价比嵌入式主板,ESM7000、ESM6800E都是公司的成熟产品,已广泛应用于工业很多领域。ESM7000/6800E板卡中Linux系统配置为linux-4.9.11内核、…

越权漏洞简介及靶场演示

越权漏洞简介及靶场演示 文章目录 一、什么是越权? (一)越权漏洞的概念(二)越权漏洞的分类(三)常见越权方法(四)未授权访问 二、越权漏洞测试过程 (一&…

VIT:视觉transformer|学习微调记录

一、了解VIT结构 vit提出了对于图片完全采用transformer结构而不是CNN的方法,通过将图片分为patch,再将patch展开输入编码器(grid_size网格大小),最后用MLP将输出转化为对应类预测。 详细信息可以看下面这个分享&…

coredns报错plugin/forward: no nameservers found

coredns报错plugin/forward: no nameservers found并且pod无法启动 出现该报错原因 是coredns获取不到宿主机配置的dns地址 查看宿主机是否有dns地址 resolvectl status 我这里是配置正确后,如果没配置过以下是不会显示出dns地址的 给宿主机增加静态dns地址之后将…

使用Diffusion Models进行图像超分辩重建

Diffusion Models专栏文章汇总:入门与实战 前言:图像超分辨率重建是一个经典CV任务,其实LR(低分辨率)和 HR(高分辨率)图像仅在高频细节上存在差异。通过添加适当的噪声,LR 图像将变得与其 HR 对应图像无法区分。这篇博客介绍一种方式巧妙利用这个规律使用Diffusion Mod…

NineData 荣获年度“创新解决方案奖”

近日,国内知名 IT 垂直媒体 & 技术社区 IT168 再次启动“技术卓越奖”评选,由行业 CIO/CTO 大咖、技术专家及 IT 媒体多方联合评审,NineData 凭借技术性能和产品创新等方面表现出色,在数据库工具领域荣获“2024 年度创新解决方…

liunx下载gitlab

1.地址: https://mirrors.tuna.tsinghua.edu.cn/gitlab-ce/yum/el7/ 安装 postfix 并启动 yum install postfix systemctl start postfix systemctl enable postfix ssh服务启动 systemctl enable sshd systemctl start sshd开放 ssh 以及 http 服务&#xff0c…

SQL—替换字符串—replace函数用法详解

SQL—替换字符串—replace函数用法详解 REPLACE() 函数——查找一个字符串中的指定子串,并将其替换为另一个子串。 REPLACE(str, old_substring, new_substring)str:要进行替换操作的原始字符串。old_substring:要被替换的子串。new_substri…