强化学习方法分类详解

强化学习方法分类详解

引言

强化学习(Reinforcement Learning, RL)是一种通过智能体与环境互动来学习如何做出最佳决策的方法。根据不同的优化中心、策略特性、环境模型、奖励函数、动作空间类型以及行为策略和目标策略的一致性,RL可以分为多种类别。本文将详细介绍这些分类标准,并解释每种分类的具体细节。


1. 根据优化中心分类

1.1 策略优化算法(以策略为中心)

定义:这类算法直接优化策略参数以最大化预期奖励,不依赖于值函数。策略可以直接从原始输入(如图像)中学习。

例子

  • REINFORCE:一种简单的策略梯度算法,通过采样轨迹来估计梯度。
  • Proximal Policy Optimization (PPO):结合了策略梯度方法的优点,通过限制更新步长来提高稳定性。

优点

  • 灵活性高:可以处理连续动作空间的问题。
  • 端到端学习:可以直接从原始输入(如图像)学习策略。
1.2 动态规划算法(以值函数为中心)

定义:这类算法通过估计状态或状态-动作对的价值来指导决策。常见的值函数包括状态价值函数 V ( s ) V(s) V(s) 和动作价值函数 Q ( s , a ) Q(s, a) Q(s,a)

例子

  • Q-learning:估计动作价值函数 Q ( s , a ) Q(s, a) Q(s,a),并通过贝尔曼最优方程进行更新。
  • SARSA:类似于Q-learning,但采用的是on-policy方式。

优点

  • 解释性强:可以直接看到每个状态或动作的好坏程度。
  • 收敛速度快:在某些情况下,值函数方法比其他方法更快地收敛到最优策略。

2. 根据策略是否随机分类

2.1 确定性策略算法

定义:确定性策略在每个状态下选择一个特定的动作,而不涉及概率分布。

例子

  • DQN(Deep Q-Networks):使用深度神经网络来近似动作价值函数 Q ( s , a ) Q(s, a) Q(s,a),并选择具有最高Q值的动作。

优点

  • 简单直观:每次选择最优动作,易于理解和实现。
  • 性能稳定:在许多任务中表现出色,尤其是在离散动作空间中。
2.2 随机性策略算法

定义:随机性策略在每个状态下根据概率分布选择动作,允许一定的探索空间。

例子

  • ε-greedy 策略:大多数时间选择当前估计的最佳动作(利用),偶尔随机选择其他动作(探索),公式如下:
    π ( a ∣ s ) = { 1 − ϵ + ϵ ∣ A ∣ , 如果  a = arg ⁡ max ⁡ a ′ Q ( s , a ′ ) ϵ ∣ A ∣ , 否则 \pi(a|s) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|A|}, & \text{如果 } a = \arg\max_{a'} Q(s, a') \\ \frac{\epsilon}{|A|}, & \text{否则} \end{cases} π(as)={1ϵ+Aϵ,Aϵ,如果 a=argmaxaQ(s,a)否则
  • Softmax Policy:根据动作的价值按比例分配选择概率,既考虑了当前最佳动作也保留了一定的探索空间,常用的形式是Boltzmann分布,公示如下:

π ( a ∣ s ) = exp ⁡ ( Q ( s , a ) / τ ) ∑ a ′ exp ⁡ ( Q ( s , a ′ ) / τ ) \pi(a|s) = \frac{\exp(Q(s, a)/\tau)}{\sum_{a'} \exp(Q(s, a')/\tau)} π(as)=aexp(Q(s,a)/τ)exp(Q(s,a)/τ)

优点

  • 平衡探索与利用:通过调整参数可以在探索和利用之间找到平衡。
  • 平滑过渡:通过温度参数控制选择的概率分布,使探索更加平滑。

3. 根据转移概率是否已知分类

3.1 基于模型的算法

定义:基于模型的方法假设智能体拥有环境的完整或部分模型,可以预测未来的状态和奖励。这些模型通常包括状态转移概率 p ( s ′ , r ∣ s , a ) p(s', r | s, a) p(s,rs,a) 和奖励函数 r ( s , a ) r(s, a) r(s,a)

例子

  • 动态规划(Dynamic Programming, DP):如值迭代(Value Iteration)和策略迭代(Policy Iteration),用于求解马尔科夫决策过程(MDP)。
  • 蒙特卡洛树搜索(Monte Carlo Tree Search, MCTS):结合了模拟和搜索,广泛应用于游戏AI中。

优点

  • 精确性高:由于有环境模型的支持,智能体可以更准确地预测未来的结果。
  • 规划能力强:智能体可以在不实际执行动作的情况下,通过模拟来评估不同策略的效果。
3.2 无模型的算法

定义:无模型方法直接从与环境的交互中学习,不需要显式的环境模型。这类方法更灵活,适用于未知或复杂的环境。

例子

  • Q-learning:一种经典的无模型方法,直接估计动作价值函数 Q ( s , a ) Q(s, a) Q(s,a),并通过贝尔曼最优方程进行更新。
  • SARSA:类似于Q-learning,但采用的是on-policy方式。

优点

  • 适应性强:无需事先了解环境的动态特性,适用于复杂或未知环境。
  • 易于实现:算法相对简单,容易上手。

4. 根据奖励函数是否已知分类

4.1 强化学习算法

定义:如果奖励函数已知,则可以直接进行强化学习训练。

例子

  • Q-learning:已知奖励函数的情况下,直接估计动作价值函数 Q ( s , a ) Q(s, a) Q(s,a)
  • SARSA:同样适用于已知奖励函数的情况。

优点

  • 直接应用:可以直接利用已知的奖励函数进行训练,简化了问题的复杂度。
4.2 逆强化学习算法

定义:如果奖励函数未知,那么需要根据专家实例将奖励函数学出来。

例子

  • 最大熵逆强化学习(MaxEnt IRL):通过观察专家的行为,推断出最可能的奖励函数。
  • GAIL(Generative Adversarial Imitation Learning):使用生成对抗网络来模仿专家行为,间接学习奖励函数。

优点

  • 灵活性高:可以处理未知奖励函数的情况,扩展了应用范围。
  • 数据驱动:通过观察专家行为,可以从数据中学习奖励函数。

5. 根据动作空间的类型分类

5.1 用于连续型动作空间的算法

定义:这类算法适用于动作空间是连续的情况,例如机器人操控等任务。

例子

  • DDPG(Deep Deterministic Policy Gradient):结合了值函数和策略梯度的优点,适用于连续动作空间。
  • TD3(Twin Delayed DDPG):改进版的DDPG,提升了稳定性和性能。

优点

  • 灵活性高:可以处理复杂的连续动作空间。
  • 性能优越:在许多连续动作空间的任务中表现出色。
5.2 用于离散型动作空间的算法

定义:这类算法适用于动作空间是离散的情况,例如围棋落子等任务。

例子

  • DQN(Deep Q-Networks):使用深度神经网络来近似动作价值函数 Q ( s , a ) Q(s, a) Q(s,a),并选择具有最高Q值的动作。
  • A3C(Asynchronous Advantage Actor-Critic):一种异步的Actor-Critic方法,提高了训练效率。

优点

  • 简单直观:每次选择最优动作,易于理解和实现。
  • 性能稳定:在许多离散动作空间的任务中表现出色。

6. 根据行为策略和目标策略的一致性分类

6.1 On-Policy 方法

定义:行为策略和目标策略是同一个策略。即,智能体根据当前策略采取动作,并根据这些动作的数据来更新策略。

例子

  • SARSA:采用on-policy方式,根据当前策略采取动作。
  • A2C(Advantage Actor-Critic):同步版本的Actor-Critic方法,采用on-policy方式。

优点

  • 一致性好:行为策略和目标策略一致,使得策略更新更加稳定。
  • 实时反馈:可以根据最新的行为数据实时更新策略。
6.2 Off-Policy 方法

定义:行为策略和目标策略不是同一个策略。即,智能体可以根据任意策略采取动作,但只用特定策略的数据来更新目标策略。

例子

  • Q-learning:采用off-policy方式,可以从任意策略产生的数据中学习。
  • DQN:使用经验回放缓冲区存储历史数据,支持off-policy学习。

优点

  • 数据利用率高:可以利用更多的历史数据,提高学习效率。
  • 灵活性高:可以从多种策略产生的数据中学习,增加了探索空间。
6.3 Offline 方法

定义:Offline 方法是指只基于行为策略数据来优化策略,而过程中不和环境交互。这种方法在实际生产环境中非常有用,因为频繁和环境交互的成本较高。

例子

  • Batch Reinforcement Learning:使用预先收集的数据集进行训练,避免了实时交互。
  • Offline Policy Evaluation:评估新策略的表现,而不需实际执行新策略。

优点

  • 成本低:不需要频繁与环境交互,降低了实验成本。
  • 安全性高:避免了在实际环境中测试新策略带来的风险。

结论

本文详细介绍了强化学习的主要分类,包括根据优化中心、策略特性、环境模型、奖励函数、动作空间类型以及行为策略和目标策略的一致性等方面的分类。每种分类都有其独特的特点和适用场景,理解这些分类有助于选择合适的算法来解决特定问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/945848.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

结合长短期记忆网络(LSTM)和无迹卡尔曼滤波器(UKF)的技术在机器人导航和状态估计中的应用前景

结合长短期记忆网络(LSTM)和无迹卡尔曼滤波器(UKF)的技术在机器人导航和状态估计中具有广泛的应用前景。如有滤波、导航方面的代码定制需求,可通过文末卡片联系作者获得帮助 文章目录 结合LSTM和UKF的背景结合LSTM和UKF的优势应用实例研究现状MATLAB代码示例结论结合LSTM和…

Android14 CTS-R6和GTS-12-R2不能同时测试的解决方法

背景 Android14 CTS r6和GTS 12-r1之后,tf-console默认会带起OLC Server,看起来olc server可能是想适配ATS(android-test-station),一种网页版可视化、可配置的跑XTS的方式。这种网页版ATS对测试人员是比较友好的,网页上简单配置下…

告别Kibana:Elasticsearch 桌面客户端的新变革

告别Kibana:Elasticsearch 桌面客户端的新变革 在大数据处理与分析领域,Elasticsearch 及其相关技术的应用日益广泛。长期以来,Kibana 在数据可视化与查询管理方面占据重要地位,但随着技术的不断发展,用户对于更高效、…

HTML5实现喜庆的新年快乐网页源码

HTML5实现喜庆的新年快乐网页源码 前言一、设计来源1.1 主界面1.2 关于新年界面1.3 新年庆祝活动界面1.4 新年活动组织界面1.5 新年祝福订阅界面1.6 联系我们界面 二、效果和源码2.1 动态效果2.2 源代码 源码下载结束语 HTML5实现喜庆的新年快乐网页源码,春节新年网…

【广州计算机学会、广州互联网协会联合主办 | ACM独立出版 | 高录用】第四届大数据、信息与计算机网络国际学术会议(BDICN 2025)

第四届大数据、信息与计算机网络国际学术会议(BDICN 2025)定于2025年01月10-12日在中国广州举行。会议旨在为从事“大数据”、“计算机网络”与“信息”研究的专家学者、工程技术人员、技术研发人员提供一个共享科研成果和前沿技术,了解学术发…

C语言函数栈帧的创建和销毁

文章目录 一、寄存器二、函数栈帧的创建和销毁1.什么是函数栈帧?2.案例代码-讲解3.总结函数栈帧 一、寄存器 寄存器(Register)是中央处理机、主存储器和其他数字设备中某些特定用途的存储单元。寄存器是集成电路中非常重要的一种存储单元;其可用来暂存指…

我的博客年度之旅:感恩、成长与展望

目录 感恩有你 技能满点 新年新征程 嘿,各位技术大佬、数码潮咖还有屏幕前超爱学习的小伙伴们!当新年的钟声即将敲响,我们站在时光的交汇点上,回首过往,满心感慨;展望未来,豪情满怀。过去的这…

【数据库初阶】MySQL数据类型

🎉博主首页: 有趣的中国人 🎉专栏首页: 数据库初阶 🎉其它专栏: C初阶 | C进阶 | 初阶数据结构 亲爱的小伙伴们,大家好!在这篇文章中,我们将深入浅出地为大家讲解 MySQL…

webrtc 源码阅读 make_ref_counted模板函数用法

目录 1. 模板参数解析 1.1 typename T 1.2 typename... Args 1.3 typename std::enable_if::value, T>::type* nullptr 2. scoped_refptr 3. new RefCountedObject(std::forward(args)...); 4. 综合说明 5.在webrtc中的用法 5.1 peerConnectionFactory对象的构建过…

python参数传递不可变对象含可变子对象

当传递不可变对象时。不可变对象里面包含的子对象是可变的。则方法内修改了这个可变对象,源对象也发生了变化。 a (10, 20, [5, 6]) print("a", id(a))def test01(m):print("m", id(m))m[2][0] 888print("修改m后m的值为{}".forma…

qt5.15.2+visual studio2022 免安装版环境配置

1.环境准备 visual studio2022qt5.15.2(免安装版本) 2.环境配置 2.1 打开首选项 2.2 添加Qt版本 2.3 构建套件手动添加Qt 5.15.2(msvc2019_64)并配置如下 3.新建项目 问题1:qt creator 没有欢迎界面 解决办法&#…

KOI技术-事件驱动编程(Sping后端)

1 “你日渐平庸,甘于平庸,将继续平庸。”——《以自己喜欢的方式过一生》 2. “总是有人要赢的,那为什么不能是我呢?”——科比布莱恩特 3. “你那么憎恨那些人,和他们斗了那么久,最终却要变得和他们一样,…

华为消费级QLC SSD来了

近日,有关消息显示,华为的消费级SSD产品线,eKitStor Xtreme 200E系列,在韩国一家在线零售商处首次公开销售,引起了业界的广泛关注。 尽管华为已经涉足服务器级别的SSD制造多年,但直到今年6月才正式推出面向…

007-构建工具大进步:Amper Amper Amper!

Amper Amper Amper! 今天天气不好,送孩子上少年宫之后就在茶馆里坐着。突然看到一个帖子:Project configuration with Amper,看得心情大好。 用Kotlin也有个大概几年的时间,开发了几个小工具,感觉很是不错。但是配置…

STM32 高级 物联网通讯之LoRa通讯

目录 LoRa通讯基础知识 常见的3种通讯协议 远距离高速率的传输协议 近距离高速率传输技术 近距离低功耗传输技术 低功耗广域网 采用授权频段技术 非授权频段 LoRa简介 LoRa的特点 远距离 低功耗 安全 标准化 地理定位 移动性 高性能 低成本 LoRa应用 LoRa组…

SAP月结、年结前重点检查事项(后勤与财务模块)

文章目录 一、PP生产模块相关的事务检查二、SD销售模块相关的事务检查:三、MM物料管理模块相关的事务检查四、FICO财务模块相关的事务检查五、年结前若干注意事项【SAP系统PP模块研究】 #SAP #生产订单 #月结 #年结 一、PP生产模块相关的事务检查 1、月末盘点后,生产用料的…

重装操作系统后 Oracle 11g 数据库数据还原

场景描述: 由于SSD系统盘损坏,更换硬盘后重装了操作系统,Oracle数据库之前安装在D盘(另一个硬盘),更换硬盘多添加一个盘符重装系统后盘符从D变成E,也就是之前的D:/app/... 变成了现在的 E:/app/...,重新安装…

2D图像测量到3D点云之物体三维尺寸测量!!!!

0,引言 本文将从双目采集的2D图像到3D点云进行转化,并进行物体尺寸测量,旨在为读者展示2D图像如何关联3D点云,并进行相关工业应用。 将2D图像转化为3D点云,并进行物体尺寸测量的技术,在工业领域有着广泛的…

python 渗透开发工具之SQLMapApi Server不同IP服务启动方式处理 解决方案SqlMapApiServer外网不能访问的情况

目录 说在前面 什么是 SQLMapAPI 说明 sqlmapApi能干什么 sqlmapApi 服务安装相关 kali-sqlmap存放位置 正常启动sqlmap-api server SqlMapApi-Server 解决外网不能访问情况 说在前面 什么是sqlmap 这个在前面已经说过了,如果这个不知道,就可以…

如何添加使用高德地图资源

‌高德地图瓦片地址包括以下几种类型‌:‌12 ‌矢量底图‌: 地址:https://wprd04.is.autonavi.com/appmaptile?langzh_cn&size1&scale1&style7&x{x}&y{y}&z{z}描述:包含路网和注记的矢量底图。 ‌卫星影…