1. 多项式螺旋
曲率:
κ
(
s
)
=
a
0
+
a
1
s
+
a
2
s
2
+
a
3
s
3
+
a
4
s
4
+
a
5
s
5
\begin{align} \kappa(s) = a_0 + a_1s + a_2s^2 + a_3s^3 + a_4s^4 + a_5s^5 \end{align}
κ(s)=a0+a1s+a2s2+a3s3+a4s4+a5s5
机器人朝向:
θ
(
s
)
=
a
0
s
+
a
1
s
2
2
+
a
2
s
3
3
+
a
3
s
4
4
+
a
4
s
5
5
+
a
5
s
6
6
\begin{align} \theta(s) = a_0s + \frac{a_1s^2}{2} + \frac{a_2s^3}{3} + \frac{a_3s^4}{4} + \frac{a_4s^5}{5} + \frac{a_5s^6}{6} \end{align}
θ(s)=a0s+2a1s2+3a2s3+4a3s4+5a4s5+6a5s6
轨迹:
x
(
s
)
=
∫
0
s
cos
(
θ
(
s
)
)
d
s
\begin{align} x(s) = \int_0^s{\cos(\theta(s))ds} \end{align}
x(s)=∫0scos(θ(s))ds
y
(
s
)
=
∫
0
s
sin
(
θ
(
s
)
)
d
s
\begin{align} y(s) = \int_0^s{\sin(\theta(s))ds} \end{align}
y(s)=∫0ssin(θ(s))ds
2. 边界条件
初始条件:
s
=
0
,
x
=
0
,
y
=
0
,
θ
=
0
s = 0,x = 0, y = 0, \theta = 0
s=0,x=0,y=0,θ=0
结束条件:
s
=
s
f
,
x
=
x
f
,
y
=
y
f
,
θ
=
θ
f
s = s_f, x = x_f, y = y_f, \theta = \theta_f
s=sf,x=xf,y=yf,θ=θf
x
b
=
[
x
f
y
f
θ
f
]
T
\begin{align} \bf{x_b} = \left[ x_f \ y_f \ \theta_f \right]^T \end{align}
xb=[xf yf θf]T
参数:
q
=
[
a
0
a
1
a
2
a
3
a
4
a
5
s
f
]
T
\begin{align} \bf{q} = \left[a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ s_f \right]^T \end{align}
q=[a0 a1 a2 a3 a4 a5 sf]T
边界条件:
g
(
q
)
=
h
(
q
)
−
x
b
=
{
x
(
s
f
)
−
x
f
=
0
y
(
s
f
)
−
y
f
=
0
θ
(
s
f
)
−
θ
f
=
0
\begin{align} \bf{g(q)} = \bf{h(q)} - \bf{x_b} = \begin{cases} x(s_f) - x_f = 0 \\ y(s_f) - y_f = 0 \\ \theta(s_f) - \theta_f = 0 \end{cases} \end{align}
g(q)=h(q)−xb=⎩
⎨
⎧x(sf)−xf=0y(sf)−yf=0θ(sf)−θf=0
待续…