损失函数-二分类和多分类

二分类和多分类的损失函数

二分类

  • 损失函数
    L ( y , y ^ ) = − ( y l o g ( y ^ ) ) + ( 1 − y ) l o g ( 1 − y ^ ) L(y,\hat{y}) = -(ylog(\hat{y})) + (1-y)log(1-\hat{y}) L(y,y^)=(ylog(y^))+(1y)log(1y^)
    其中真实标签表示为y(取值为 0 或 1),预测概率表示为 y ^ \hat{y} y^(取值在 0 到 1 之间)

  • 代码

import torch
import torch.nn as nn

criterion = nn.BCELoss()  # 或者使用 nn.BCEWithLogitsLoss()  BCEWithLogitsLoss可以直接接收logit输出
# 假设模型的输出 logits
logits = torch.tensor([0.2, 0.8, 0.5, 0.1]) #shape: (4, 1) 
predicted_probabilities = torch.sigmoid(logits) #shape: (4, 1) 
# 真实标签
labels = torch.tensor([0.0, 1.0, 1.0, 0.0]) #shape: (4, 1) 
# 计算损失
loss = criterion(predicted_probabilities, labels)
print("Loss:", loss.item())
  • 可视化损失值
    对于输出的loss值,我们往往不能理解这个loss是好还是坏,我们重看损失函数,发现对于单个正样本来说:
    l o s s = − l o g ( y ^ ) loss = -log(\hat{y}) loss=log(y^)
    对于单个负样本来说:
    l o s s = − l o g ( 1 − y ^ ) loss = -log(1-\hat{y}) loss=log(1y^)
    从这个公式我们可以反推模型对正样本预测的概率为:
    h i t p o s = e − l o s s hit_{pos} = e^{-loss} hitpos=eloss
    对负样本预测的概率为:
    h i t n e g = 1 − e − l o s s hit_{neg} = 1-e^{-loss} hitneg=1eloss
    这个hit就比较形象了,$hit_{pos}$越接近1,说明正样本的预测效果效果越好,$hit_{neg}$越接近0,说明负样本的预测效果效果越好

多分类

  • 损失函数
    L ( y , y ^ ) = − ∑ c = 1 C y l o g ( y ^ ) L(y,\hat{y}) = -\sum_{c=1}^Cylog(\hat{y}) L(y,y^)=c=1Cylog(y^)
    其中真实标签表示为y(取值为 0 或 1,表示是否属于第c类),预测概率表示为$\hat{y}$ (取值在 0 到 1 之间)
  • 代码
import torch
import torch.nn as nn

criterion = nn.CrossEntropyLoss()

# 假设模型的输出 logits(未经过 sigmoid)
logits = torch.tensor([[1.0, 2.0],  # 类别 0 和 1 的 logits
                       [0.0, 1.0],
                       [0.5, 0.5],
                       [0.0, 0.0]]) # shape:(4,2)

# 真实标签,格式为类别索引
# 0 表示第一个类别,1 表示第二个类别
labels = torch.tensor([1, 1, 0, 0])  # shape:(1,4)

# 计算损失
loss = criterion(logits, labels)

print("Loss:", loss.item())
  • 可视化损失值
    对于输出的loss值,我们往往不能理解这个loss是好还是坏,我们重看损失函数,发现对于单个样本来说:
    l o s s = − l o g ( y ^ ) loss = -log(\hat{y}) loss=log(y^)
    从这个公式我们可以反推模型对当前样本的正确类别预测的概率为:
    h i t = e − l o s s hit = e^{-loss} hit=eloss
    这个hit就比较形象了,hit越接近1,说明效果越好

二分类和多分类区别

  • 从损失函数的物理含义上来看,二分类的损失函数不仅希望正样本输出概率接近1,并且希望负样本的输出概率接近0;而多分类的损失函数仅仅希望正样本输出概率接近1,对于负样本其实没有约束
  • 对于二分类问题:如果你希望模型不仅能找出正样本,而且筛掉副样本,就用二分类损失。如果你仅仅希望找出正样本而不管负样本,多分类的损失也能用。

多分类问题中评价问题

TP(True Positive):真实标签为正类,模型预测为正类的样本数量。
TN(True Negative):真实标签为负类,模型预测为负类的样本数量。
FP(False Positive):真实标签为负类,但模型预测为正类的样本数量。
FN(False Negative):真实标签为正类,但模型预测为负类的样本数量。

  • 准确率acc
    关心模型预测的能力
    a c c = T P + T N T P + F P + F N + T N acc = \frac{TP+TN}{TP+FP+FN+TN} acc=TP+FP+FN+TNTP+TN

  • 精准率pre
    关心模型预测负样本能力
    p r e = T P T P + F P pre = \frac{TP}{TP+FP} pre=TP+FPTP

  • 召回率Recall
    关心模型预测正样本的能力
    r e c a l l = T P T P + F N recall = \frac{TP}{TP+FN} recall=TP+FNTP

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/945742.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

初识 Conda:一站式包管理和环境管理工具

文章目录 1. 什么是 Conda?2. 为什么选择 Conda?3. Conda 的安装3.1 安装步骤(以 Miniconda 为例) 4. Conda 的核心功能4.1 包管理4.2 环境管理4.3 Conda Forge4.4 设置国内镜像 5. 常见使用场景5.1 数据科学项目5.2 离线安装5.3 …

docker 搭建集群

准备3台机器: #dockermaster 192.168.31.150 sudo hostnamectl set-hostname dockermaster #初始化主节点 docker swarm init --advertise-addr 192.168.31.150 #查看集群是否搭建成功 docker node ls #dockernode1 192.168.31.151 sudo hostnamectl set-hostname …

Kafka消息不丢失与重复消费问题解决方案总结

1. 生产者层面 异步发送与回调处理 异步发送方式:生产者一般使用异步方式发送消息,异步发送有消息和回调接口两个参数。在回调接口的重写方法中,可通过异常参数判断消息发送状态。若消息发送成功,异常参数为null;若发…

StarRocks 存算分离在得物的降本增效实践

编者荐语: 得物优化数据引擎布局,近期将 4000 核 ClickHouse 迁移至自建 StarRocks,成本降低 40%,查询耗时减半,集群稳定性显著提升。本文详解迁移实践与成果,文末附丁凯剑老师 StarRocks Summit Asia 2024…

微服务-1 认识微服务

目录​​​​​​​ 1 认识微服务 1.1 单体架构 1.2 微服务 1.3 SpringCloud 2 服务拆分原则 2.1 什么时候拆 2.2 怎么拆 2.3 服务调用 3. 服务注册与发现 3.1 注册中心原理 3.2 Nacos注册中心 3.3 服务注册 3.3.1 添加依赖 3.3.2 配置Nacos 3.3.3 启动服务实例 …

IDEA工具使用介绍、IDEA常用设置以及如何集成Git版本控制工具

文章目录 一、IDEA二、建立第一个 Java 程序三、IDEA 常用设置四、IDEA 集成版本控制工具(Git、GitHub)4.1 IDEA 拉 GitHub/Git 项目4.2 IDEA 上传 项目到 Git4.3 更新提交命令 一、IDEA 1、什么是IDEA? IDEA,全称为 IntelliJ ID…

kafka开机自启失败问题处理

前言:在当今大数据处理领域,Kafka 作为一款高性能、分布式的消息队列系统,发挥着举足轻重的作用。无论是海量数据的实时传输,还是复杂系统间的解耦通信,Kafka 都能轻松应对。然而,在实际部署和运维 Kafka 的…

二维数组综合

第1题 稀疏矩阵 查看测评数据信息 nm矩阵大部分元素是0的矩阵称为稀疏矩阵,假设有k个非0元素,则可把稀疏矩阵用K3的矩阵简记之,其中第一列是行号,第二列是列号,第三列是该行、该列下的非0元素的值。如:…

STM32-笔记20-测量按键按下时间

1、按键按下的时间-思路 我们先检测下降沿信号,检测到以后,在回调函数里切换成检测上升沿信号,当两个信号都检测到的时候,这段时间就是按键按下的时间,如图所示:>N*(ARR1)CCRx的值 N是在这段时间内&…

【网络协议】路由信息协议 (RIP)

未经许可,不得转载。 路由信息协议(Routing Information Protocol,简称 RIP)是一种使用跳数(hop count)作为路由度量标准的路由协议,用于确定源网络和目标网络之间的最佳路径。 文章目录 什么是…

PHP后执行php.exe -v命令报错并给出解决方案

文章目录 一、执行php.exe -v命令报错解决方案 一、执行php.exe -v命令报错 -PHP Warning: ‘C:\windows\SYSTEM32\VCRUNTIME140.dll’ 14.38 is not compatible with this PHP build linked with 14.41 in Unknown on line 0 解决方案 当使用PHP8.4.1时遇到VCRUNTIME140.dll…

blender中合并的模型,在threejs中显示多个mesh;blender多材质烘培成一个材质

描述:在blender中合并的模型导出为glb,在threejs中导入仍显示多个mesh,并不是统一的整体,导致需要整体高亮或者使用DragControls等不能统一控制。 原因:模型有多个材质,在blender中合并的时候,…

0xc0000020错误代码怎么处理,Windows11、10坏图像错误0xc0000020的修复办法

“0xc0000020”是一种 Windows 应用程序错误代码,通常表明某些文件缺失或损坏。这可能是由于系统文件损坏、应用程序安装或卸载问题、恶意软件感染、有问题的 Windows 更新等原因导致的。 比如,当运行软件时,可能会出现类似“C:\xx\xxx.dll …

wangEditor富文本插件在vue项目中使用和媒体上传的实现

wangEditor是前端一个比较流行的简洁易用,功能强大的前端富文本编辑器,支持 JS Vue React,提供了很多丰富的功能,下面手把手教你实现wangWditor富文本插件在vue项目中配置,保存、图片上传等功能。无脑ctrlc即可 基本功…

MySQL root用户密码忘记怎么办(Reset root account password)

在使用MySQL数据库的的过程中,不可避免的会出现忘记密码的现象。普通用户的密码如果忘记,可以用更高权限的用户(例如root)进行重置。但是如果root用户的密码忘记了,由于root用户本身就是最高权限,那这个方法…

C语言学习笔记(1)

在学习前,需要有一定的C语言基础。不必很深入,只需要知道函数,头文件,指针,数组等的概念就可以,但并非0基础笔记。 由于写到后面,不好编辑了,决定分成多篇写,请按编号学…

使用uWSGI将Flask应用部署到生产环境

使用uWSGI将Flask应用部署到生产环境: 1、安装uWSGI conda install -c conda-forge uwsgi(pip install uwsgi会报错) 2、配置uWSGI 在python程序的同一文件夹下创建 uwsgi.ini文件,文件内容如下表。 需要按照实际情况修改文件名称…

集成方案 | Docusign + 蓝凌 EKP,打造一站式合同管理平台,实现无缝协作!

本文将详细介绍 Docusign 与蓝凌 EKP 的集成步骤及其效果,并通过实际应用场景来展示 Docusign 的强大集成能力,以证明 Docusign 集成功能的高效性和实用性。 在当今数字化办公环境中,企业对于提高工作效率和提升用户体验的需求日益迫切。蓝凌…

CMS漏洞靶场攻略

DeDeCMS 环境搭建 傻瓜式安装 漏洞一:通过文件管理器上传WebShel 步骤⼀:访问目标靶场其思路为 dedecms 后台可以直接上传任意文件,可以通过⽂件管理器上传php文件获取webshell 登陆网站后台 步骤二:登陆到后台点击 【核心】 --》 【文件式…

1、Jmeter、jdk下载与安装

1、访问官网,点击下载Jmeter http://jmeter.apache.org/ 2、在等待期间,下载对应的Java https://www.oracle.com/cn/java/technologies/downloads/#jdk23-windows 3、全部下载好,先安装JDK ![在这里插入图片描述](https://i-blog.csdnimg…