k-Means聚类算法 HNUST【数据分析技术】(2025)

1.理论知识

K-means算法,又称为k均值算法。K-means算法中的k表示的是聚类为k个簇,means代表取每一个聚类中数据值的均值作为该簇的中心,或者称为质心,即用每一个的类的质心对该簇进行描述。K-Means算法接受参数K;然后将样本数据集划分为K个聚类。获得的聚类需要满足:同一个聚类中的样本数据集相似度较高;而不同聚类中的样本数据集相似度较小。

算法思想

以空间中K个点为中心进行聚类(即先从样本集中随机选取 k个样本作为簇中心),对最靠近他们的对象归类(所有样本与这 k个“簇中心”的距离,对于每一个样本,将其划分到与其距离最近的“簇中心”所在的簇中)。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。


2.算法流程

  • 先从没有标签的元素集合A中随机取K个元素,作为K个子集各自的质心。
  • 分别计算剩下的元素到K个子集质心的距离,根据距离将元素分别划分到最近的子集。
  • 根据聚类结果,重新计算质心(计算方法为子集中所有元素各个维度的算术平均数)
  • 将集合A中全部元素按照新的质心然后再重新聚类。
  • 重复第4步,直到聚类结果不再发生变化。

3.算法流程图


4.参考代码

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics import f1_score, accuracy_score, normalized_mutual_info_score, rand_score
from sklearn.preprocessing import LabelEncoder
from sklearn.decomposition import PCA

# 数据保存在.csv文件中
iris = pd.read_csv("dataset/Iris.csv", header=0)  # 鸢尾花数据集 Iris  class=3
# wine = pd.read_csv("dataset/wine.csv")  # 葡萄酒数据集 Wine  class=3
# seeds = pd.read_csv("dataset/seeds.csv")  # 小麦种子数据集 seeds  class=3
# wdbc = pd.read_csv("dataset/wdbc.csv")  # 威斯康星州乳腺癌数据集 Breast Cancer Wisconsin (Diagnostic)  class=2
# glass = pd.read_csv("dataset/glass.csv")  # 玻璃辨识数据集 Glass Identification  class=6

df = iris  # 设置要读取的数据集

columns = list(df.columns)  # 获取数据集的第一行,第一行通常为特征名,所以先取出
features = columns[:len(columns) - 1]  # 数据集的特征名(去除了最后一列,因为最后一列存放的是标签,不是数据)
dataset = df[features]  # 预处理之后的数据,去除掉了第一行的数据(因为其为特征名,如果数据第一行不是特征名,可跳过这一步)
attributes = len(df.columns) - 1  # 属性数量(数据集维度)
class_labels = list(df[columns[-1]])  # 原始标签

k = 3

# 这里已经知道了分3类,其他分类这里的参数需要调试
model = KMeans(n_clusters=k)
# 训练模型
model.fit(dataset)
# 预测全部数据
label = model.predict(dataset)
print(label)


def clustering_indicators(labels_true, labels_pred):
    if type(labels_true[0]) != int:
        labels_true = LabelEncoder().fit_transform(df[columns[len(columns) - 1]])  # 如果数据集的标签为文本类型,把文本标签转换为数字标签
    f_measure = f1_score(labels_true, labels_pred, average='macro')  # F值
    accuracy = accuracy_score(labels_true, labels_pred)  # ACC
    normalized_mutual_information = normalized_mutual_info_score(labels_true, labels_pred)  # NMI
    rand_index = rand_score(labels_true, labels_pred)  # RI
    return f_measure, accuracy, normalized_mutual_information, rand_index


F_measure, ACC, NMI, RI = clustering_indicators(class_labels, label)
print("F_measure:", F_measure, "ACC:", ACC, "NMI", NMI, "RI", RI)

if attributes > 2:
    dataset = PCA(n_components=2).fit_transform(dataset)  # 如果属性数量大于2,降维
# 打印出聚类散点图
plt.scatter(dataset[:, 0], dataset[:, 1], marker='o', c='black', s=7)  # 原图
plt.show()
colors = np.array(["red", "blue", "green", "orange", "purple", "cyan", "magenta", "beige", "hotpink", "#88c999"])
maker = ['*', '+', 'x', 'D', '8', 's']
# 循换打印k个簇,每个簇使用不同的颜色
for i in range(k):
    plt.scatter(dataset[np.nonzero(label == i), 0],
                dataset[np.nonzero(label == i), 1],
                c=colors[i],
                s=100,
                marker=maker[i % 5]
                )
plt.show()

5.测试数据

(鸢尾花数据集,你需要到网络上下载)

表3.1K-Means算法输入的数据

sepal length

sepal width

petal length

petal width

class

5.1

3.5

1.4

0.2

Iris-setosa

4.9

3

1.4

0.2

Iris-setosa

4.6

3.1

1.5

0.2

Iris-setosa

    *输入的数据用于鸢尾花的类型判断,同时K设置为3。


6.实验结果与分析

图3.2鸢尾花数据集

图3.3 鸢尾花数据k-means分类后实验结果


7.算法优缺点

优点:

  1. 算法简单,容易实现

缺点:

  1. 对K个初始质心的选择比较敏感,容易陷入局部最小值。
  2. K值是用户指定的,而用户很难去选择一个合适的完美的K值。又因为没有标签,很难进行评估。
  3. 对于一些复杂的数据分布就无法进行正确的聚类。

 其他实验(我是芒果酱点一个关注吧(σ′▽‵)′▽‵)σ)

  • k-Means聚类算法 HNUST【数据分析技术】(2024)-CSDN博客
  • PageRank Web页面分级算法 HNUST【数据分析技术】(2024)-CSDN博客
  • KNN分类算法 HNUST【数据分析技术】(2024)-CSDN博客
  • Apriori关联规则算法 HNUST【数据分析技术】(2024)-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/945036.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

阿里云redis内存优化——PCP数据清理

在阿里云安装了一个redis节点,今天使用时忽然想着点击了一下分析内存。好家伙,居然崩出了一个30多M的块出来。问题是我本地安装的redis没有这个啊,怎么奇怪冒出这个来了。 本着把系统用干榨尽的态度,研究了下这个问题的来源。网上…

Java开发-后端请求成功,前端显示失败

文章目录 报错解决方案1. 后端未配置跨域支持2. 后端响应的 Content-Type 或 CORS 配置问题3. 前端 request 配置问题4. 浏览器缓存或代理问题5. 后端端口未被正确映射 报错 如下图,后端显示请求成功,前端显示失败 解决方案 1. 后端未配置跨域支持 …

MarkItDown的使用(将Word、Excel、PDF等转换为Markdown格式)

MarkItDown的使用(将Word、Excel、PDF等转换为Markdown格式) 本文目录: 零、时光宝盒🌻 一、简介 二、安装 三、使用方法 3.1、使用命令行形式 3.2、用 Python 调用 四、总结 五、参考资料 零、时光宝盒🌻 &a…

akamai3.0 wizzair 网站 分析

声明: 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关! 有相关问题请第一时间头像私信联系我删…

kubernetes Gateway API-1-部署和基础配置

文章目录 1 部署2 最简单的 Gateway3 基于主机名和请求头4 重定向 Redirects4.1 HTTP-to-HTTPS 重定向4.2 路径重定向4.2.1 ReplaceFullPath 替换完整路径4.2.2 ReplacePrefixMatch 替换路径前缀5 重写 Rewrites5.1 重写 主机名5.2 重写 路径5.2.1 重新完整路径5.2.1 重新部分路…

likeAdmin架构部署(踩坑后的部署流程

1、gitee下载 https://gitee.com/likeadmin/likeadmin_java.git 自己克隆 2、项目注意 Maven:>3.8 ❤️.9 (最好不要3.9已经试过失败 node :node14 (不能是18 已经测试过包打不上去使用14的换源即可 JDK:JDK8 node 需要换源 npm c…

宠物行业的出路:在爱与陪伴中寻找增长新机遇

在当下的消费市场中,如果说有什么领域能够逆势而上,宠物行业无疑是一个亮点。当人们越来越注重生活品质和精神寄托时,宠物成为了许多人的重要伴侣。它们不仅仅是家庭的一员,更是情感的寄托和生活的调剂。然而,随着行业…

Java 堆排序原理 图文详解 代码逻辑

文章目录 1. 时间复杂度 & 空间复杂度2. 大顶堆、小顶堆3. 具体步骤 & 原理1. 判断是否满足堆的性质2. 维护堆的性质3. 交换位置 4. 代码实现 1. 时间复杂度 & 空间复杂度 时间复杂度: O(nlogn) 建堆时间复杂度: O(n) 排序时间复杂度: O(nlogn)空间复杂度: O(1) …

计算机网络|数据流向剖析与分层模型详解

文章目录 一、网络中的数据流向二、计算机网络通信模型1.OSI 模型2.TCP/IP 模型3.TCP/IP五层模型3.1 分层架构描述3.2各层地址结构3.3UDP数据包报头结构 三、总结 一、网络中的数据流向 在计算机网络中,数据的流向是指数据从发送端到接收端的传输路径。数据流向涉及…

ensp、HCL环境部署vm版

ensp、HCL环境部署vm版 前言部署环境vmware安装下载镜像创建虚拟机安装ensp、HCL创建快照 问题此平台不支持虚拟化的 AMD-V/rvi。 前言 因为我换了电脑,锐龙版的win11,我按照以前的思路去装软件,发现有很多问题,特别是跳hyper-v弹…

鸿蒙项目云捐助第二十九讲云捐助项目云数据库商品的批量增加功能实现

鸿蒙项目云捐助第二十九讲云捐助项目云数据库商品的批量增加功能实现 关于鸿蒙云捐助项目,前面的内容已使用云函数,云数据库分别实现云捐助项目首页中的项分类导航,底部导航,轮播图功能,这里继续实现云数据库加载捐赠…

【LeetCode: 83. 删除排序链表中的重复元素 + 链表】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

Spring源码_05_IOC容器启动细节

前面几章,大致讲了Spring的IOC容器的大致过程和原理,以及重要的容器和beanFactory的继承关系,为后续这些细节挖掘提供一点理解基础。掌握总体脉络是必要的,接下来的每一章都是从总体脉络中, 去研究之前没看的一些重要…

2024-12-29-sklearn学习(25)无监督学习-神经网络模型(无监督) 烟笼寒水月笼沙,夜泊秦淮近酒家。

文章目录 sklearn学习(25) 无监督学习-神经网络模型(无监督)25.1 限制波尔兹曼机25.1.1 图形模型和参数化25.1.2 伯努利限制玻尔兹曼机25.1.3 随机最大似然学习 sklearn学习(25) 无监督学习-神经网络模型(无监督) 文章参考网站&a…

BUG分析 - 重启有时失败

1. 倒查版本 1.0_11 - ok1.0_12 - fail 2.对比1.0_11和1.0_12 失败时的日志 ================================== 1.0_11 ============================== 2024-12-26 09:46:51.886 INFO [26332] [ThreadPLCPool::in

git注意事项

提交代码的备注 feat : 开发 新增功能 fix: 修复 git相关 1. git安装及全局用户设置 Git安装 npm install git -ggit修改用户名邮箱密码 git config --global --replace-all user.name "要修改的用户名" git config --global --replace-all user.email"要修改…

LeetCode每日三题(六)数组

一、最大子数组和 自己答案: class Solution {public int maxSubArray(int[] nums) {int begin0;int end0;if(numsnull){//如果数组非空return 0;}else if(nums.length1){//如果数组只有一个元素return nums[0];}//初值选为数组的第一个值int resultnums[0];int i…

一个通用的居于 OAuth2的API集成方案

在现代 web 应用程序中,OAuth 协议是授权和认证的主流选择。为了与多个授权提供商进行无缝对接,我们需要一个易于扩展和维护的 OAuth 解决方案。本文将介绍如何构建一个灵活的、支持多提供商的 OAuth 系统,包括动态 API 调用、路径参数替换、…

小程序配置文件 —— 15 页面配置

页面配置 小程序的页面配置,也称为局部配置,每一个小程序页面也可以使用自己的 .json 文件来对页面的窗口表现进行配置; 需要注意的是:页面配置文件的属性和全局配置文件中的 window 属性几乎一致,只不过这里不需要额…

【从零开始入门unity游戏开发之——C#篇37】进程、线程和C# 中实现多线程有多种方案

文章目录 进程、线程和C#多线程一、进程的基本概念二、线程的基本概念三、C#中的多线程1、为什么需要多线程?2、*C# 中如何实现多线程**2.1 **使用 Thread 类**(1)示例(2)线程休眠(3)设置为后台…