优化程序中的数据:从代数到向量解

前言

在前文笔者简单介绍了把数据迭代抽象为线性代数,并介绍了空间体、维度等概念。

数据复用

数据复用是一种提高程序执行效率与数据局部性的方法,分为自复用与组复用,

自复用:如果多个迭代访问同一个内存位置,那么称为自复用。

组复用:如果多个迭代访问不同的内存位置,但这些位置存储的是相关的数据,那么称为组复用。

举个例子:

自复用:Z[1][1],每次迭代都访问 Z[1][1] 这个内存位置的数据,这样的访问经常被使用,因为这块内存的数据可能被改变。

组复用:Z[1][2], Z[1][3],每次迭代访问不同的内存位置(如 Z[1][2] 和 Z[1][3]),每次通过不同的指令进行访问,但这些位置的数据之间有相关性。

循环中的重复访问

数据复用,就是循环中的重复访问数据,对于数组的遍历,假设每个元素之间都没有依赖关系,那么我们可以直接全部并行执行,在并行的基础上,我们会优先执行具有局部性的数据,因为cache中的数据往往都具有局部性,如果去执行与前面的数据局部性差的数据,很可能这些数据在下一级内存中,这样会浪费CPU时间。

为了优化局部性,我们希望识别访问相同数据或相同cache线的遍历(迭代)。

矩阵的秩与重复迭代

矩阵的秩是线性无关行(或列)的数目,在上文笔者简单介绍了如何将迭代与矩阵等价。

那么在数组的迭代过程中,如果进行了重复的迭代,那么转化为矩阵,也就是多了线性相关行(或列)的数目,而矩阵的秩其实并没有改变。

那么,我们需要找出重复的迭代,并将这些迭代进行密集处理,这样能获得更好的局部性。

找出重复迭代

在前文笔者写过不等式表示出来的矩阵:

|  1  0 |   | i |   >=   | 0 |
| -1  0 | * | j |   >=   | -5 |
| -1  1 |           >=   | 0 |
|  0 -1 |           >=   | -7 |

我们可以把矩阵写成这样:

Fi + f >= 0

这样写,就是一次迭代的访问,同理,再写一次迭代:

Fl + f >= 0

那么,我们可以知道,重复的迭代,就是:

Fi + f = Fl + f
也就是:F(i - l) = 0

这样做,我们就成功把迭代等价问题转为了数学问题。

F(i - l) = 0求解

现在我们已经知道了,满足F(i - l) = 0的两次迭代等价,其中一个对矩阵的秩没有影响,它是多余的,现在,我们的问题是这个等式的求解。

向量与空间体

我们先思考一下,i和l都是向量,那么假设它们的差值为向量v,那么问题就是:

Fv = 0

F是一个矩阵,而且是确定值,它由不等式给出,那么抽象到空间中,它可以表示为一个空间体,

假设这个空间体是平面,那么V,一定就是垂直于这个平面的向量,根据向量的性质我们可以知道它们的相乘结果是0。

现在我们对空间抽象有一些理解了,那么拓展到更高维度,不管F是一个怎样的空间体,v向量空间都会使它们的结果为0,那么把V称之为零空间,我们的目的就是求解出这个零空间,这样我们就会知道那些迭代是等价的。

到这一步就不用再细究了,直接使用matlab或者python进行求解是一个非常不错的选择。

向量解与迭代

假设我们使用matlab等工具求解出v的值为:(这个值是笔者随便乱敲的)

[1
 1]

我们迭代使用的遍历有i和j,那么也就是说:

[i1   - [i2
 j1]  -  j2]  = [1
 				 1]

也就是说,在我们迭代遍历数组并使用i和j作为迭代量时,如果这一次的迭代与之后的一次迭代,它们的差值刚好满足向量v的结果,那么它们就是重复迭代。

总结

将数据复用问题转化为重复迭代问题,再引入矩阵转化为代数问题,最后求解出访问相同数据的重复迭代。以上都属于自复用内容,先更这些。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/944480.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

虚幻引擎是什么?

Unreal Engine,是一款由Epic Games开发的游戏引擎。该引擎主要是为了开发第一人称射击游戏而设计,但现在已经被成功地应用于开发模拟游戏、恐怖游戏、角色扮演游戏等多种不同类型的游戏。虚幻引擎除了被用于开发游戏,现在也用于电影的虚拟制片…

多个微服务 Mybatis 过程中出现了Invalid bound statement (not found)的特殊问题

针对多个微服务的场景,记录一下这个特殊问题: 如果启动类上用了这个MapperScan注解 在resource 目录下必须建相同的 com.demo.biz.mapper 目录结构,否则会加载不到XML资源文件 。 并且切记是com/demo/biz 这样的格式创建,不要使用…

使用Excel制作通达信自定义外部数据,安排!!!

Excel相信大家电脑上都有这个工具,相比敲编程代码,用这个去做自定义数据对大多数人,应该是比较友好的。自定义数据分为外部序列数据,看了一下内容理解起来比较多,分两期给大家介绍。为了照顾电脑基础薄弱的朋友&#x…

win10、win11-鼠标右键还原、暂停更新

系统优化 win 10jihuo win 11jihuo鼠标右键还原暂停更新 update 2024.12.28win 10 jihuo winx,打开powershell管理员,输入以下命令,选择1并等待 irm https://get.activated.win | iex参考:https://www.bilibili.com/video/BV1TN411M72J/?sp…

QT集成IntelRealSense双目摄像头2,集成OpenGL

上一篇文章写了如何把IntelRealSense摄像头的SDK集成到QT项目,并成功采集数据,在没有用OpenCV的情况下完成色彩数据,以及深度数据的显示。 具体地址:https://blog.csdn.net/qujia121qu/article/details/144734163 本次主要写如何…

数据分析的分类和EDIT思维框架

为了服务于企业不同层次的决策,商业数据分析过程需要提供相应的数据科学产出物。 一般而言,数据分析需要经历从需求层、数据层、分析层到输出层四个阶段。 第一个阶段是需求层——确定目标,具体目标需要依据具体的层次进行分析&#xff1a…

面试场景题系列:设计URL短链

1.场景需求界定 1.缩短URL:提供一个长URL,返回一个短很多的URL。 2.重定向URL:提供一个缩短了的URL,重定向到原URL。 3.高可用、可扩展性和容错性考量。 •写操作:每天生成1亿个URL。 •每秒的写操作数&#xff1a…

Linux 基本指令

目录 1.常见指令 1.1 ls指令 1.2 pwd指令 1.3 cd指令 1.4 touch指令 1.5 mkdir指令 1.6 rm和rmdir指令 1.7 man指令 1.8 cp指令 1.9 mv指令 ​编辑 1.10 cat指令 1.11 more指令 1.12 less指令 1.13 head指令 1.14.tail指令 1.15 时间相关的指令 1.16 cal…

WEB UI 创建视图

1 视图名称 (点第1创建视图) 2 模型节点 可以空 3 上下文节点 4 新增节点下的属性 ,参考结构(先建好的结构) 5 选择视图类型:(表单, 列表) 表单 :单条数据 列表 :多条数据(表格…

redis cluster实验详解

华子目录 实验环境准备部署redis cluster添加节点删除节点redis cluster集群维护 实验 环境准备 再开3台主机 先把之前3台源码编译的redis删除 [rootredis-node1 ~]# cd /usr/local/redis/ [rootredis-node1 redis]# make uninstall[rootredis-node2 ~]# cd /usr/local/redi…

【详细讲解】hive优化

1、开启本地模式 大多数的Hadoop Job是需要Hadoop提供的完整的可扩展性来处理大数据集的。不过,有时Hive的输入数据量是非常小的。在这种情况下,为查询触发执行任务消耗的时间可能会比实际job的执行时间要多的多。对于大多数这种情况,Hive可…

Unity3d UGUI如何优雅的实现Web框架(Vue/Rect)类似数据绑定功能(含源码)

前言 Unity3d的UGUI系统与Web前端开发中常见的数据绑定和属性绑定机制有所不同。UGUI是一个相对简单和基础的UI系统,并不内置像Web前端(例如 Vue.js或React中)那样的双向数据绑定或自动更新UI的机制。UGUI是一种比较传统的 UI 系统&#xff…

828华为云征文|使用sysbench对Flexus X实例对mysql进行性能测评

目录 一、Flexus X实例概述 1.1?Flexus X实例 1.2?在mysql方面的优势 二、在服务器上安装MySQL 2.1 在宝塔上安装docker 2.2 使用宝塔安装mysql 2.3 准备测试数据库和数据库表 三、安装sysbench并进行性能测试 3.1 使用yum命令sysbench 3.2?运行?sysbench 并进行…

影刀进阶指令 | Kimi (对标ChatGPT)

文章目录 影刀进阶指令 | Kimi (对标ChatGPT)一. 需求二. 流程三. 实现3.1 流程概览3.2 流程步骤讲解1\. 确定问题2\. 填写问题并发送3\. 检测答案是否出完 四. 运维 影刀进阶指令 | Kimi (对标ChatGPT) 简单讲讲RPA调用kimi实现…

【教程】通过Docker运行AnythingLLM

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 官方教程:Local Docker Installation ~ AnythingLLM 1、先创建一个目录用于保存anythingllm的持久化文件: sudo mkdir /app su…

游戏引擎学习第65天

回顾我们在模拟区域更改方面的进展 目前我们正在进行游戏的架构调整,目标是建立一个引擎架构。我们正在实施的一个关键变化是引入模拟区域的概念,这样我们可以创建非常大的游戏世界,而这些世界的跨度不必受限于单个浮点变量。 通过这种方式…

【从零开始入门unity游戏开发之——C#篇35】C#自定义类实现Sort自定义排序

文章目录 一、List<T>自带的排序方法1、List<T>调用Sort()排序2、 能够使用 Sort() 方法进行排序的本质 二、自定义类的排序1、通过实现泛型IComparable<T> 接口&#xff08;1&#xff09;示例&#xff08;2&#xff09;直接调用 int 类型的 CompareTo 方法进…

YOLO系列正传(五)YOLOv4论文精解(上):从CSPNet、SPP、PANet到CSPDarknet-53

系列文章 YOLO系列基础 YOLO系列基础合集——小白也看得懂的论文精解-CSDN博客 YOLO系列正传 YOLO系列正传&#xff08;一&#xff09;类别损失与MSE损失函数、交叉熵损失函数-CSDN博客 YOLO系列正传&#xff08;二&#xff09;YOLOv3论文精解(上)——从FPN到darknet-53-C…

Redis 实战篇 ——《黑马点评》(上)

《引言》 在进行了前面关于 Redis 基础篇及其客户端的学习之后&#xff0c;开始着手进行实战篇的学习。因内容很多&#xff0c;所以将会分为【 上 中 下 】三篇记录学习的内容与在学习的过程中解决问题的方法。Redis 实战篇的内容我写的很详细&#xff0c;为了能写的更好也付出…

DevOps实战:用Kubernetes和Argo打造自动化CI/CD流程(2)

DevOps实战&#xff1a;用Kubernetes和Argo打造自动化CI/CD流程&#xff08;2&#xff09; 背景 Tips 翻遍国内外的文档&#xff0c;关于 Argo 作为 CI/CD 当前所有开源的文档&#xff0c;博客&#xff0c;argo官方文档。得出的结论是&#xff1a; argo官方给出的例子都相对…