机器学习2-NumPy

ndarray自动广播扩展维度,便于进行行列式,数组计算

# 自动广播机制,1维数组和2维数组相加

# 二维数组维度 2x5
# array([[ 1,  2,  3,  4,  5],
#         [ 6,  7,  8,  9, 10]])
d = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
# c是一维数组,维度5
# array([ 4,  6,  8, 10, 12])
c = np.array([ 4,  6,  8, 10, 12])
e = d + c
e

# 输出
array([[ 5, 8, 11, 14, 17], [10, 13, 16, 19, 22]])

创建ndarray

# 导入numpy
import numpy as np

# 1、从list创建array 
a = [1,2,3,4,5,6]  # 创建简单的列表
b = np.array(a)    # 将列表转换为数组
b
# 输出
array([1, 2, 3, 4, 5, 6])

# 2、arange:创建元素从0到10依次递增2的数组
# 通过np.arange创建
# 通过指定start, stop (不包括stop),interval来产生一个1维的ndarray
a = np.arange(0, 10, 2)
a
# 输出
array([0, 2, 4, 6, 8])

# 3、zeros:创建指定长度或者形状的全0数组
a = np.zeros([3,3])
a
# 输出
array([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]])

# 4、ones:创建指定长度或者形状的全1数组
a = np.ones([3,3])
a
# 输出
array([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]])

ndarray的属性包括shapedtypesizendim等,通过如下代码可以查看ndarray数组的属性。

  • shape:数组的形状 ndarray.shape,1维数组(N,)(N,),2维数组(M,N)(M,N),3维数组(M,N,K)3维数组(M,N,K)。
  • dtype:数组的数据类型。
  • size:数组中包含的元素个数ndarray.size,其大小等于各个维度的长度的乘积。
  • ndim:数组的维度大小ndarray.ndim, 其大小等于ndarray.shape所包含元素的个数。
a = np.ones([3, 3])
print('a, dtype: {}, shape: {}, size: {}, ndim: {}'.format(a.dtype, a.shape, a.size, a.ndim))
a, dtype: float64, shape: (3, 3), size: 9, ndim: 2

创建ndarray之后,可以对其数据类型或形状进行修改,代码实现如下:

# 转化数据类型
b = a.astype(np.int64)
print('b, dtype: {}, shape: {}'.format(b.dtype, b.shape))

# 改变形状
c = a.reshape([1, 9])
print('c, dtype: {}, shape: {}'.format(c.dtype, c.shape))

数组间运算

# 数组 减去 数组, 用对应位置的元素相减
arr1 = np.array([[1., 2., 3.], [4., 5., 6.]])
arr2 = np.array([[11., 12., 13.], [21., 22., 23.]])
# 数组 乘以 数组,用对应位置的元素相乘
arr1 * arr2
array([[ 11., 24., 39.], [ 84., 110., 138.]])

# 数组开根号,将每个位置的元素都开根号
arr ** 0.5
array([[1. , 1.41421356, 1.73205081], [2. , 2.23606798, 2.44948974]])

切片上的操作都会改变原数组,除非用np.copy创建新的内存空间

# 数组切片产生的新数组,还是指向原来的内存区域,数据不会被复制。
# 视图上的任何修改都会直接反映到源数组上。
a = np.arange(30)
arr_slice = a[4:7]
arr_slice[0] = 100
a, arr_slice
(array([ 0, 1, 2, 3, 100, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]), array([100, 5, 6]))

# 通过copy给新数组创建不同的内存空间
a = np.arange(30)
arr_slice = a[4:7]
arr_slice = np.copy(arr_slice)
arr_slice[0] = 100
a, arr_slice
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]), array([100, 5, 6]))
  • mean:计算算术平均数,零长度数组的mean为NaN。
  • stdvar:计算标准差和方差,自由度可调(默认为n)。
  • sum :对数组中全部或某轴向的元素求和,零长度数组的sum为0。
  • maxmin:计算最大值和最小值。
  • argminargmax:分别为最大和最小元素的索引。
  • cumsum:计算所有元素的累加。
  • cumprod:计算所有元素的累积。

随机数np.random

# 可以多次运行,观察程序输出结果是否一致
# 如果不设置随机数种子,观察多次运行输出结果是否一致
np.random.seed(10)
a = np.random.rand(3, 3)
# 设置了随机数种子,每次输出都一样

# 生成均匀分布随机数,随机数取值范围在[0, 1)之间
a = np.random.rand(3, 3)
a
array([[0.08833981, 0.68535982, 0.95339335], [0.00394827, 0.51219226, 0.81262096], [0.61252607, 0.72175532, 0.29187607]])

# 生成均匀分布随机数,指定随机数取值范围和数组形状
a = np.random.uniform(low = -1.0, high = 1.0, size=(2,2))
a
array([[ 0.83554825, 0.42915157], [ 0.08508874, -0.7156599 ]])

# 生成标准正态分布随机数
a = np.random.randn(3, 3)
a
array([[ 1.484537 , -1.07980489, -1.97772828], [-1.7433723 , 0.26607016, 2.38496733], [ 1.12369125, 1.67262221, 0.09914922]])

# 生成正态分布随机数,指定均值loc和方差scale
a = np.random.normal(loc = 1.0, scale = 1.0, size = (3,3))
a
array([[2.39799638, 0.72875201, 1.61320418], [0.73268281, 0.45069099, 1.1327083 ], [0.52385799, 2.30847308, 1.19501328]])

# 打乱数组顺序(只打乱第一维)
# 生成一维数组
a = np.arange(0, 30)
# 打乱一维数组顺序
np.random.shuffle(a)

# 随机选取部分元素
a = np.arange(30)
b = np.random.choice(a, size=5)

线性代数

  • diag:以一维数组的形式返回方阵的对角线(或非对角线)元素,或将一维数组转换为方阵(非对角线元素为0)。
  • dot:矩阵乘法。
  • trace:计算对角线元素的和。
  • det:计算矩阵行列式。
  • eig:计算方阵的特征值和特征向量。
  • inv:计算方阵的逆。

文件读写

# 使用np.fromfile从文本文件'housing.data'读入数据
# 这里要设置参数sep = ' ',表示使用空白字符来分隔数据
# 空格或者回车都属于空白字符,读入的数据被转化成1维数组
d = np.fromfile('./work/housing.data', sep = ' ')

# save & load
# 产生随机数组a
a = np.random.rand(3,3)
np.save('a.npy', a)

# 从磁盘文件'a.npy'读入数组
b = np.load('a.npy')

np.exp(x) --计算x的指数值

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/943968.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

云效流水线自动化部署web静态网站

云效流水线部署静态网站 背景新建流水线配置流水线运行流水线总结 背景 配置流水线以前,每次更新导航网站都要登进去宝塔后台,删掉旧的目录和文件,再上传最新的文件,太麻烦啦 网上的博客基本都是分享vue项目,这一篇是…

【开源项目】数字孪生化工厂—开源工程及源码

飞渡科技数字孪生化工厂管理平台,基于自研孪生引擎,将物联网IOT、人工智能、大数据、云计算等技术应用于化工厂,为化工厂提供实时数据分析、工艺优化、设备运维等功能,助力提高生产效率以及提供安全保障。 通过可视化点位标注各厂…

SpringCloud整合skywalking实现链路追踪和日志采集

1.部署skywalking https://blog.csdn.net/qq_40942490/article/details/144701194 2.添加依赖 <!-- 日志采集 --><dependency><groupId>org.apache.skywalking</groupId><artifactId>apm-toolkit-logback-1.x</artifactId><version&g…

Linux下Nvidia显卡GPU开启驱动持久化

GPU开启驱动持久化的原因 GPU 驱动一直处于加载状态&#xff0c; 减少运行程序时驱动加载的延迟。不开启该模式时&#xff0c;在程序每次调用完 GPU 后&#xff0c; GPU 驱动都会被卸载&#xff0c;下次调用时再重新加载&#xff0c; 驱动频繁卸载加载&#xff0c; GPU 频繁被…

图像处理-Ch4-频率域处理

Ch4 频率域处理(Image Enhancement in Frequency Domain) FT &#xff1a;将信号表示成各种频率的正弦信号的线性组合。 频谱&#xff1a; ∣ F ( u , v ) ∣ [ R 2 ( u , v ) I 2 ( u , v ) ] 1 2 |F(u, v)| \left[ R^2(u, v) I^2(u, v) \right]^{\frac{1}{2}} ∣F(u,v)…

虚拟化 | Proxmox VE 8.x 开源的虚拟化平台快速上手指南

[ 知识是人生的灯塔,只有不断学习,才能照亮前行的道路 ] 0x00 简介说明 前言简述 描述:作为一个爱折腾的IT打工佬,时刻以学习各类新技术新知识为目标,这不正好有一台部署了VMware vSphere ESXi 虚拟化环境的服务器,由于正好安装其系统的磁盘有坏道,经常导致使用 ESXi 异…

rocketmq-push模式-消费侧重平衡-类流程图分析

1、观察consumer线程 使用arthas分析 MQClientFactoryScheduledThread 定时任务线程 定时任务线程&#xff0c;包含如下任务&#xff1a; 每2分钟更新nameServer列表 每30秒更新topic的路由信息 每30秒检查broker的存活&#xff0c;发送心跳请求 每5秒持久化消费队列的offset…

使用亚马逊针对 PyTorch 和 MinIO 的 S3 连接器实现可迭代式数据集

2023 年 11 月&#xff0c;Amazon 宣布推出适用于 PyTorch 的 S3 连接器。适用于 PyTorch 的 Amazon S3 连接器提供了专为 S3 对象存储构建的 PyTorch 数据集基元&#xff08;数据集和数据加载器&#xff09;的实现。它支持用于随机数据访问模式的地图样式数据集和用于流式处理…

[2003].第2-01节:关系型数据库表及SQL简介

所有博客大纲 后端学习大纲 MySQL学习大纲 1.数据库表介绍&#xff1a; 1.1.表、记录、字段 1.E-R&#xff08;entity-relationship&#xff0c;实体-联系&#xff09;模型中有三个主要概念是&#xff1a; 实体集 、 属性 、 联系集2.一个实体集&#xff08;class&#xff09…

wps透视数据表

1、操作 首先选中你要的行字段表格 -> 插入 -> 透视数据表 -> 拖动行值&#xff08;部门&#xff09;到下方&#xff0c;拖动值&#xff08;包裹数量、运费&#xff09;到下方 2、删除 选中整个透视数据表 -> delete 如图&#xff1a;

Python-流量分析常用工具脚本(Tshark,pyshark,scapy)

免责声明&#xff1a;本文仅作分享~ 目录 wireshark scapy 例&#xff1a;分析DNS流量 检查数据包是否包含特定协议层&#xff08;过滤&#xff09; 获取域名 例&#xff1a;提取 HTTP 请求中的 Host 信息 pyshark 例&#xff1a;解析 HTTP 请求和响应 例&#xff1a;分…

开发场景中Java 集合的最佳选择

在 Java 开发中&#xff0c;集合类是处理数据的核心工具。合理选择集合&#xff0c;不仅可以提高代码效率&#xff0c;还能让代码更简洁。本篇文章将重点探讨 List、Set 和 Map 的适用场景及优缺点&#xff0c;帮助你在实际开发中找到最佳解决方案。 一、List&#xff1a;有序存…

[2029].第6-06节:MyISAM引擎中的索引与 InnoDB引擎中的索引对比

所有博客大纲 后端学习大纲 MySQL学习大纲 1.MyISAM索引&#xff1a; 1.1.B树索引适用存储引擎&#xff1a; 1.B树索引适用存储引擎如下表所示&#xff1a; 2.即使多个存储引擎都支持同一种类型的B树索引&#xff0c;但它们的实现原理也是不同的 Innodb和MyISAM默认的索引是B…

DS的使用

使用DS和[address]实现字的传送 要解决的问题:CPU从内存单元中要读取数据 要求&#xff1a;CPU要读取一个内存单元的时候&#xff0c;必须先给出这个内存单元的地址。 原理&#xff1a;在8086PC中&#xff0c;内存地址段地址和偏移地址组成(段地址:偏移地址) 解决方案 :DS和[a…

使用RKNN进行YOLOv8人体姿态估计的实战教程:yolov8-pose.onnx转yolov8-pose.rknn+推理全流程

之前文章有提到“YOLOv8的原生模型包含了后处理步骤,其中一些形状超出了RK3588的矩阵计算限制,因此需要对输出层进行一些裁剪”,通过裁剪后得到的onnx能够顺利的进行rknn转换,本文将对转rnkk过程,以及相应的后处理进行阐述。并在文末附上全部源码、数据、模型的百度云盘链…

短视频矩阵系统后端源码搭建实战与技术详解,支持OEM

一、引言 随着短视频行业的蓬勃发展&#xff0c;短视频矩阵系统成为了众多企业和创作者进行多平台内容运营的有力工具。后端作为整个系统的核心支撑&#xff0c;负责处理复杂的业务逻辑、数据存储与交互&#xff0c;其搭建的质量直接影响着系统的性能、稳定性和可扩展性。本文将…

JS 设置按钮的loading效果

本文是在其他博主的博客JS学习笔记 | 遮罩层Loading实现_jsp loading-CSDN博客基础上&#xff0c;进行实践的。 目录 一、需求 二、Jspcss实现代码 一、需求 在springboot项目中的原始html5页面中&#xff0c;原本的功能是页面加载时&#xff0c;使用ajax向后端发送请求&…

用VBA将word文档处理成支持弹出式注释的epub文档可用的html内容

有一种epub文件&#xff0c;其中的注释以弹窗形式显示&#xff0c;如下图&#xff1a; 点击注释引用后&#xff0c;对应的注释内容会弹出在页面中显示&#xff0c;再次点击弹窗外的任意位置该弹窗即关闭&#xff0c;关闭后点击任意注释引用&#xff0c;对应的注释内容会弹窗显示…

实践KDTS-WEB从mysql迁移到kingbasev9

数据库国产化替代数据迁移是一个复杂且关键的过程。这涉及到将原有数据库中的数据准确、完整地迁移到新的国产数据库中&#xff0c;同时确保数据的完整性和一致性。人大金仓提供了强大的数据库迁移工具&#xff08;KDTS&#xff09;对同构、异构数据库数据迁移&#xff1b; 数…

多旋翼无人机理论 | 四旋翼动力学数学模型与Matlab仿真

多旋翼无人机理论 | 四旋翼动力学数学模型与Matlab仿真 力的来源数学模型数学模型总结Matlab 仿真 力的来源 无人机的动力系统&#xff1a;电调-电机-螺旋桨 。 给人最直观的感受就是 电机带动螺旋桨转&#xff0c;产生升力。 螺旋桨旋转产生升力的原因&#xff0c;在很多年…