【论文笔记】Visual Alignment Pre-training for Sign Language Translation

🍎个人主页:小嗷犬的个人主页
🍊个人网站:小嗷犬的技术小站
🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题: Visual Alignment Pre-training for Sign Language Translation
作者: Peiqi Jiao, Yuecong Min, Xilin Chen
发表: ECCV 2024

基本信息

摘要

手语翻译(Sign Language Translation, SLT)旨在将手语视频翻译为文本句子。

尽管gloss序列为SLT中的视觉表征学习提供了有效的对齐监督信息,但标注gloss的高成本限制了其可扩展性。

现有工作在gloss-free的情况下尚未取得令人满意的结果。

在本研究中,我们将这一挑战归因于视觉token和文本token之间的灵活对应关系,并通过从文本句子中构建类似gloss的约束来解决这一问题。

具体而言,我们提出了一种 视觉对齐预训练(Visual Alignment Pre-training, VAP) 方案,通过以贪婪的方式对齐视觉和文本token来利用视觉信息。

VAP方案增强了视觉编码器捕获语义感知视觉信息的能力,并促进了与在大规模语料库上预训练的翻译模块的更好适配。

针对四个SLT基准的实验结果证明了VAP的有效性,能够生成合理的对齐,并显著缩小与gloss-based方法之间的性能差距。

介绍

Illustration of the alignment generated by VAP for a given sign video and its text sentence

主要贡献

  • 探讨了gloss annotation在手语翻译(SLT)中的作用,并展示了在gloss-free设置下利用视觉信息的重要性。
  • 提出了视觉对齐预训练(Visual Alignment Pre-training, VAP),通过以贪婪的方式对齐视觉和文本token来促进视觉表征学习。
  • 对gloss-free的SLT模型训练进行了深入的实验。实验结果表明,VAP具有良好的效果,能够生成可靠的对齐结果,并接近gloss-based的方法。

方法

Overview of the proposed visual alignment pre-training

gloss标注在手语翻译中的作用

手语翻译旨在将手语视频翻译为对应的文本句子。如图2所示,通用的SLT网络可以划分为一个视觉编码器 ψ V \psi_V ψV 和一个翻译模块 ψ T \psi_T ψT。给定一个手语视频或其他类型的输入(例如,骨架数据) X \mathcal{X} X 和对应的文本句子 s = { s 1 , ⋯   , s U } s = \{s_1, \cdots, s_U\} s={s1,,sU} ψ V \psi_V ψV 从视频中提取视觉特征 V = { v 1 , ⋯   , v r } \mathcal{V} = \{v_1, \cdots, v_r\} V={v1,,vr},而 ψ T \psi_T ψT 基于 V \mathcal{V} V 预测 s s s。网络通过最小化负对数似然来优化,其公式为:

L S L T = − log ⁡ p ( s ∣ V ; θ ψ V , θ ψ T ) . \mathcal{L}_{SLT} = -\log p(s | \mathcal{V}; \theta_{\psi_V}, \theta_{\psi_T}). LSLT=logp(sV;θψV,θψT).

在自然语言处理(NLP)中,单词对齐通常指的是在平行文本中指示对应单词 a = { a i } i = 1 m a = \{a_i\}_{i=1}^m a={ai}i=1m b = { b j } j = 1 n b = \{b_j\}_{j=1}^n b={bj}j=1n 的过程,可以表示为矩阵 A ∈ R m × n \mathcal{A} \in \mathbb{R}^{m \times n} ARm×n,其中 A i j ∈ { 0 , 1 } A_{ij} \in \{0, 1\} Aij{0,1} 表示 a i a_i ai 是否与 b j b_j bj 对应。考虑到 V \mathcal{V} V s s s 之间的对齐关系 A \mathcal{A} A,最近gloss-based的SLT研究中使用的损失函数可以重新表述为:

L = L S L T + L S L R = − log ⁡ ∑ A p ( A ∣ V ) p ( s ∣ V , A ) − log ⁡ p ( g ∣ V ) , \mathcal{L} = \mathcal{L}_{SLT} + \mathcal{L}_{SLR} = -\log \sum_{\mathcal{A}} p(\mathcal{A} | \mathcal{V}) p(s | \mathcal{V}, \mathcal{A}) - \log p(g | \mathcal{V}), L=LSLT+LSLR=logAp(AV)p(sV,A)logp(gV),

其中 g = { g 1 , ⋯   , g M } g = \{g_1, \cdots, g_M\} g={g1,,gM} 表示包含 M M M 个gloss的gloss标注,它与 V \mathcal{V} V 单调对齐。如上文公式所示, L S L T \mathcal{L}_{SLT} LSLT 的监督来自两个方面:对齐本身和翻译与对齐的结合。gloss-based的方法通过引入额外的监督来提高视觉信息的利用率。然而,之前的gloss-free方法表现较差,主要原因在于 V \mathcal{V} V s s s 之间的灵活对应关系,这阻碍了最佳对齐的寻找,并无法为视觉编码器提供足够的监督。

基于以上分析,我们认为解决该问题的关键在于从文本句子中构建类似gloss的约束,并提出了 视觉对齐预训练(Visual Alignment Pre-training, VAP) 方案。

视觉对齐预训练

gloss-based的传统方法通常利用CTC(连接时序分类)对 ψ V \psi_V ψV 进行监督,假设 ψ V \psi_V ψV 中所有的单调对齐均成立,公式如下:

L C T C ( g , V ) = − log ⁡ ( p ( g ∣ V ; θ ψ V ) ) = − log ⁡ ( ∑ π p ( π ∣ V ; θ ψ V ) ) L_{CTC}(g, V) = -\log(p(g|V; \theta_{\psi_V})) = -\log\left(\sum_{\pi}p(\pi|V; \theta_{\psi_V})\right) LCTC(g,V)=log(p(gV;θψV))=log(πp(πV;θψV))

其中 π \pi π 表示 V V V g g g 之间的一种对齐关系。我们假设视频中每个手势的近似含义可以在对应的文本句子中找到,并尝试利用 V V V s s s 之间的对齐关系来监督 ψ V \psi_V ψV。然而, V V V s s s 之间存在多达 2 T ⋅ U 2^{T \cdot U} 2TU 种潜在的对齐方式,这对在没有适当约束的情况下(例如单调关系或gloss注解所具有的约束)识别最佳对齐关系提出了挑战。受近期视觉-语言预训练技术的启发,我们提出了一种VAP方案,用于简化对齐过程,以贪婪方式近似最佳对齐,并为视觉编码器提供逐帧标签。

具体而言,给定一个文本句子 s s s,我们首先使用文本编码器 ψ E \psi_E ψE 提取其对应的文本特征 ψ E ( s ) \psi_E(s) ψE(s),然后通过两个简单的线性层将 V V V ψ E ( s ) \psi_E(s) ψE(s) 投影到一个联合特征空间:

v ~ t = Linear ( v t ) , s ~ u = Linear ( ψ E ( s u ) ) . \tilde{v}_t = \text{Linear}(v_t), \quad \tilde{s}_u = \text{Linear}(\psi_E(s_u)). v~t=Linear(vt),s~u=Linear(ψE(su)).

随后,通过识别每个视觉特征与最相似的文本特征,可以计算对齐关系 A V 2 S ∈ R T × U \mathbf{A}^{V2S} \in \mathbb{R}^{T \times U} AV2SRT×U

A t , u V 2 S = { 1 , for  u = arg ⁡ max ⁡ u ′ f ( v ~ t , s ~ u ′ ) , 0 , otherwise . A^{V2S}_{t,u} = \begin{cases} 1, & \text{for } u = \arg\max_{u'} f(\tilde{v}_t, \tilde{s}_{u'}), \\ 0, & \text{otherwise}. \end{cases} At,uV2S={1,0,for u=argmaxuf(v~t,s~u),otherwise.

其中, f ( ⋅ , ⋅ ) f(\cdot, \cdot) f(,) 以余弦相似度的形式实现。为了确保 A V 2 S \mathbf{A}^{V2S} AV2S 的合理性,我们通过以下公式计算视频和文本的相似性 ρ ( X , s ) \rho(\mathcal{X}, s) ρ(X,s)

ρ ( X , s ) = 1 T ∑ t = 1 T f ( v ~ t , A t V 2 S s ~ ) , \rho(\mathcal{X}, s) = \frac{1}{T} \sum_{t=1}^{T} f(\tilde{v}_t, A^{V2S}_t \tilde{s}), ρ(X,s)=T1t=1Tf(v~t,AtV2Ss~),

并采用对比学习模式优化 A V 2 S \mathbf{A}^{V2S} AV2S。然而,仅依赖 ρ ( X , s ) \rho(\mathcal{X}, s) ρ(X,s) 进行预训练可能会导致 ψ V \psi_V ψV 的输出坍缩为一个恒定值。为了避免这种情况,我们还计算文本与视频的相似性 ρ ( s , X ) \rho(s, \mathcal{X}) ρ(s,X),该相似性通过为每个文本特征识别最相似的视觉特征 A S 2 V \mathbf{A}^{S2V} AS2V 来计算。

在此基础上,对于包含 N N N 个视频-文本对 { X i , s i } i = 1 N \{ \mathcal{X}^i, s^i \}_{i=1}^N {Xi,si}i=1N 的小批量,可以通过以下公式计算对比损失:

L Align = − 1 2 N ( ∑ i = 1 N log ⁡ exp ( ρ ( X i , s i ) / σ ) ∑ j = 1 N exp ( ρ ( X i , s j ) / σ ) + ∑ i = 1 N log ⁡ exp ( ρ ( s i , X i ) / σ ) ∑ j = 1 N exp ( ρ ( s i , X j ) / σ ) ) , L_{\text{Align}} = -\frac{1}{2N} \left( \sum_{i=1}^N \log\frac{\text{exp}(\rho(\mathcal{X}^i, s^i) / \sigma)}{\sum_{j=1}^N \text{exp}(\rho(\mathcal{X}^i, s^j) / \sigma)} + \sum_{i=1}^N \log\frac{\text{exp}(\rho(s^i, \mathcal{X}^i) / \sigma)}{\sum_{j=1}^N \text{exp}(\rho(s^i, \mathcal{X}^j) / \sigma)} \right), LAlign=2N1(i=1Nlogj=1Nexp(ρ(Xi,sj)/σ)exp(ρ(Xi,si)/σ)+i=1Nlogj=1Nexp(ρ(si,Xj)/σ)exp(ρ(si,Xi)/σ)),

其中, σ \sigma σ 是用于缩放logits的预定义温度。通过所提出的 L Align L_{\text{Align}} LAlign,我们增大了成对的视觉和文本特征序列之间的相似性,这将鼓励每个特征找到其最相关的配对特征并靠拢。

此外,对齐的计算仅依赖于gloss级别的信息,缺乏对齐时间一致性的约束。上文公式的分解表明,翻译损失也显著增强了对齐质量。我们通过实验(表3)展示,仅通过重新初始化翻译模块就可以提升性能,这表明优化对齐过程与提升翻译能力同步进行的重要性。因此,我们将 L SLT L_{\text{SLT}} LSLT 纳入进来,以确保所用翻译模块的时间一致性,从而达到对齐的时间一致性。预训练阶段的最终监督目标如下:

L pre-train = L Align + L SLT . L_{\text{pre-train}} = L_{\text{Align}} + L_{\text{SLT}}. Lpre-train=LAlign+LSLT.

通过以上设计,我们可以计算视觉和文本token之间的近似对齐,并获得一个语义感知的视觉编码器。

端到端微调

与一般的机器翻译数据集相比,公共的手语翻译(SLT)数据集仍然规模有限。因此,我们采用在大规模语料库(如 mBART, T5)上预训练的翻译模块来替代浅层翻译模块,从而在微调过程中缓解对大量训练数据的需求。此外,类似于文献中的 G2T(Gloss2Text)任务,我们设计了一个伪gloss到文本(P2T,Pseudo-gloss2Text)任务,用于微调预训练翻译模块以更好地适应任务。

具体来说,我们可以基于对齐矩阵 A v 2 s A^{v2s} Av2s 为每个手语视频生成一个伪gloss序列 g ~ \tilde{g} g~。由于 A v 2 s A^{v2s} Av2s 为每个视觉特征识别出最相似的文本token,而视频的连续性导致局部窗口内的特征可能会引用相同的token,我们简单地合并重复的token,通过以下公式获得 g ~ \tilde{g} g~

g ~ = B ( A v 2 s s ) , \tilde{g} = \mathcal{B}(A^{v2s}s), g~=B(Av2ss),

其中, B \mathcal{B} B 表示合并操作。P2T 的训练目标可以表述为:

L P 2 T = − log ⁡ p ( s ∣ g ~ ) . \mathcal{L}_{P2T} = -\log p(s|\tilde{g}). LP2T=logp(sg~).

至此,我们已经有了预训练良好的视觉编码器和微调良好的翻译模块。接下来是对整个模型的端到端微调。我们采用一个两层的 MLP 作为视觉-语言映射器(V-L 映射器),与之前工作中相同,该模块负责将视觉特征投影到文本空间。在微调期间,我们仍然包括 L A l i g n \mathcal{L}_{Align} LAlign 损失以持续改进视觉编码器,最终的总损失可以表示为:

L f i n e − t u n e = L A l i g n + L S L T . \mathcal{L}_{fine-tune} = \mathcal{L}_{Align} + \mathcal{L}_{SLT}. Lfinetune=LAlign+LSLT.

对齐质量评估

在上文中,我们假设视频中每个手语的大致含义可以在文本句子中找到,并通过识别最相似的文本token来计算对齐关系。基于这一假设,生成的伪gloss g ~ \tilde{g} g~ 也应该与手语视频单调对齐。然而,由于不同词汇之间的差异,我们无法直接通过gloss来评估生成对齐关系的质量。因此,我们提出了两种方法来间接评估生成对齐关系的质量。

如果 g ~ \tilde{g} g~ 与手语视频单调对齐,它应该能够像gloss一样指导 SLT 网络的学习。因此,我们从零开始训练一个 SLT 网络,类似于大多数gloss-based的 SLT 方法,但用伪gloss g ~ \tilde{g} g~ 替代了gloss,其损失函数可以表述为:

L = L S L T + L C T C ( g ~ , V ) , \mathcal{L} = \mathcal{L}_{SLT} + \mathcal{L}_{CTC}(\tilde{g}, V), L=LSLT+LCTC(g~,V),

通过这种基于伪gloss的模型与 VAP 的性能差距可以隐式反映生成对齐关系的质量。

与通过翻译性能(如词错误率,WER)评估对齐质量相比,通过对齐性能进行评估更为直观。因此,我们提出通过在预训练中用伪gloss替换文本句子,计算生成伪gloss与对应gloss之间的 WER 来评估对齐方法的质量。换句话说,这种方法旨在检查对齐方法是否能够从无序序列中找到正确的顺序。

总的来说,所提出的方法能够评估对齐关系的质量,包括生成结果和对齐方法本身的质量。

训练与推理

训练

如图 3 所示,VAP 的训练流程包括三个阶段。

Illustration of the training pipeline of VAP

视觉编码器在第 1 阶段使用 L pre-train L_{\text{pre-train}} Lpre-train 进行预训练。翻译模块基于大规模语料库进行预训练,并在第 2 阶段使用 g ~ \tilde{g} g~ 进行微调。最后,在第 3 阶段,整个模型使用 L f i n e − t u n e \mathcal{L}_{fine-tune} Lfinetune 进行端到端微调。

需要注意的是,VAP 是一种gloss-free方法,gloss仅用于如上文所述的伪gloss质量评估。

推理

在经过第3阶段的微调后,整个模型被用于推理。具体来说,视觉编码器首先提取视觉特征 V \mathcal{V} V,然后视觉-语言映射器(V-L mapper)将这些特征投射到文本空间中。接下来,翻译模块以自回归的方式生成文本句子。

实验

主实验

Performance comparison on PHOENIX14T and CSL-Daily

Performance comparison on How2Sign and OpenASL

消融实验

Ablation results of pre-training objectives. Ablation results of fine-tuning and pseudo-gloss-based training. Ablation results of gloss-based VAP

Comparison with SOTA retrieval method on PHOENIX14T test set. Ablation results of aggregation method

可视化

Qualitative results of translation and alignment. Visualization of the retrieval results of two German words. Visualization of the CTC and VAP predictions

总结

在本文中,我们专注于在无gloss标注情况下,如何在手语翻译(SLT)中利用视觉信息。

我们提出了一种视觉对齐预训练(Visual Alignment Pre-training, VAP)方案,通过从文本句子中构建类似gloss的约束来增强视觉编码器的能力。

VAP以一种贪心的方式逼近视觉特征与文本token之间的最优对齐,同时为视觉编码器提供逐帧的标签,并改善其与在大规模语料库上预训练的翻译模块之间的兼容性。

实验结果表明,所提出的VAP方案在引导视觉编码器学习和建立视觉特征与文本token之间的有意义对齐方面是有效的。此外,VAP生成的对齐结果可以作为伪gloss,为手语翻译模型提供中间监督。

我们预计,所提出的VAP方案将推动未来的研究工作,特别是在将手语翻译扩展到大规模数据集方面,从而促进手语翻译领域的发展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/942712.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据可视化echarts学习笔记

目录,介绍 知识储备 一端操作,多端联动的效果(开启了多个网页,操作一端,多个网页的效果会跟着改变) cmd命令控制面板返回上一级或上上级 在当前目录打开文件: cd 文件名 在Windows命令提示符&am…

踏踏实实练SQLday1-1连续登录

踏踏实实练SQLday1 1连续登录1.1查询连续登录3天以上的用户第一步去重第二步-开窗rownumber,用date减一下,对结果进行分组 -- over()开窗函数知识图谱第三步 1.2查询连续登录最大天数用户1.3某个用户连续登录天数注意先where一下这个用户的数据过滤出来.…

Vue开发环境搭建上篇:安装NVM和NPM(cpnm、pnpm)

文章目录 引言I 安装NVM1.1 Windows系统安装NVM,实现Node.js多版本管理1.2 配置下载镜像1.3 NVM常用操作命令II NPM永久使用淘宝源安装 cnpm安装pnpm【推荐】see also: vscode常用插件引言 淘宝镜像:http://npm.taobao.org 和 http://registry.npm.taobao.org 已在 2022.06.3…

数据仓库工具箱—读书笔记02(Kimball维度建模技术概述03、维度表技术基础)

Kimball维度建模技术概述 记录一下读《数据仓库工具箱》时的思考,摘录一些书中关于维度建模比较重要的思想与大家分享🤣🤣🤣 第二章前言部分作者提到:技术的介绍应该通过涵盖各种行业的熟悉的用例展开(赞同…

Postman接口测试02|执行接口测试、全局变量和环境变量、接口关联、动态参数、断言

目录 五、Postman 1、安装 2、postman的界面介绍 六、Postman执行接口测试 1、请求页签 3、响应页签 七、Postman的环境变量和全局变量 1、创建环境变量和全局变量可以解决的问题 2、postman中的操作 八、接口关联 1、第一种方式:Json提取器 2、第二种方…

Oracle 日常巡检

1. 检查服务器状态 1.1. CPU使用情况 1.1.1. top top 命令是 Linux 和 Unix 系统中用于显示实时系统状态的工具,特别是对于监控 CPU 和内存的使用非常有用。 在命令行中输入 top,top 会显示一个实时更新的界面,其中包含系统的关键指标&am…

计算机组成原理的学习笔记(8)-- 指令系统·其一 指令的组成以及数据寻址方式

学习笔记 前言 ​ 本文主要是对于b站尚硅谷的计算机组成原理的学习笔记,仅用于学习交流。 1. 指令 1.1 组成 操作码(Opcode):指指令中执行特定操作的部分。地址码:指令中用于指定操作数位置的部分。 1.2 扩展操作…

JavaScript 标准内置对象——Array

1、构造函数 2、静态方法 // 从可迭代或类数组对象创建一个新的浅拷贝的数组实例 // arrayLike 想要转换成数组的类数组或可迭代对象 Array.from(arrayLike, mapFn, thisArg) Array.fromAsync(arrayLike, mapFn, thisArg) // 异步Array.isArray(value) // 判断传递的值是否是一…

IndexOf Apache Web For Liunx索引服务器部署及应用

Apache HTTP Server 是一款广泛使用的开源网页服务器软件,它支持多种协议,包括 HTTP、HTTPS、FTP 等 IndexOf 功能通常指的是在一个目录中自动生成一个索引页面的能力,这个页面会列出该目录下所有的文件和子目录。比如网上经常看到的下图展现的效果,那么接下来我们就讲一下…

【PSINS】EKF、UKF、CKF三个滤波下的组合导航(松组合)对比

该 MATLAB 代码实现了扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)和无迹卡尔曼滤波的变体(CKF)的对比,主要用于导航与定位领域,通过处理惯性测量单元(IMU)和GP…

PPT画图——如何设置导致图片为600dpi

winr,输入regedit打开注册表 按路径找,HKEY_CURRENT_USER\Software\Microsoft\Office\XX.0\PowerPoint\Options(xx为版本号,16.0 or 15.0或则其他)。名称命名:ExportBitmapResolution 保存即可,…

Linux复习4——shell与文本处理

认识vim编辑器 #基本语法格式: vim 文件名 •如果文件存在,进入编辑状态对其进行编辑 •如果文件不存在,创建文件并进入编辑状态 例: [rootlocalhosttest]# vim practice.txt #Vim 编辑器三种模式: 命令模式&a…

Gmsh有限元网格剖分(Python)---点、直线、平面的移动

Gmsh有限元网格剖分(Python)—点、直线、平面的移动和旋转 最近在学习有限元的网格剖分算法,主要还是要参考老外的开源Gmsh库进行,写一些博客记录下学习过程,方便以后回忆嘞。 Gmsh的官方英文文档可以参考:gmsh.pdf 但咋就说&a…

【Linux】基础I/O -> 如何谈文件与文件系统?

文件的基础理解 空文件也要在磁盘上占据空间。文件 文件内容文件属性。文件操作 对内容的操作 对属性的操作或者是对内容和属性的操作。标定一个文件,必须使用:文件路径 文件名(具有唯一性)。如果没有指明对应的文件路径&…

python+reportlab创建PDF文件

目录 字体导入 画布写入 创建画布对象 写入文本内容 写入图片内容 新增页 画线 表格 保存 模板写入 创建模板对象 段落及样式 表格及样式 画框 图片 页眉页脚 添加图形 构建pdf文件 reportlab库支持创建包含文本、图像、图形和表格的复杂PDF文档。 安装&…

软件项目需求分析的实践探索(1)

一、项目启动与规划 组建团队 包括项目经理、系统分析师、业务分析师以及可能涉及的最终用户代表和领域专家等。例如,开发一个医疗管理软件,就需要有医疗行业的专家参与,确保对医疗业务流程有深入理解。明确各成员的职责,如系统分…

Windows下ESP32-IDF开发环境搭建

Windows下ESP32-IDF开发环境搭建 文章目录 Windows下ESP32-IDF开发环境搭建一、软件安装二、搭建IDF开发环境2.1 安装VS Code插件:2.2 配置ESP-IDF插件:2.3 下载例程源码: 三、编译和烧录代码四、Windows下使用命令行编译和烧录程序4.1 配置环…

从 GitLab.com 到 JihuLab.com 的迁移指南

本文分享从 GitLab.com 到 JihuLab.com 的迁移指南。 近期,GitLab Inc. 针对其 SaaS 产品做了限制,如果被判定为国内用户,则会建议使用其在国内的发布版本极狐GitLab。从 GitLab SaaS 产品(GitLab.com)迁移到极狐GitL…

Mysql-索引的数据结构

为什么要使用索引 索引是存储引擎用于快速找到数据记录的一种数据结构,就好比一本教科书的目录部分,通过目录中找到对应文章的页码,便可快速定位到需要的文章。MySQL中也是一样的道理,进行数据查找时,首先查看查询条件…

ReactPress 1.6.0:重塑博客体验,引领内容创新

ReactPress 是一个基于Next.js的博客&CMS系统, Github项目地址:https://github.com/fecommunity/reactpress 欢迎Star。 体验地址:http://blog.gaoredu.com/ 今天,我们自豪地宣布ReactPress 1.6.0版本的正式发布,…