Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击

Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击

之前已经针对CIFAR10训练了多种分类器:
Pytorch | 从零构建AlexNet对CIFAR10进行分类
Pytorch | 从零构建Vgg对CIFAR10进行分类
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
Pytorch | 从零构建ResNet对CIFAR10进行分类
Pytorch | 从零构建MobileNet对CIFAR10进行分类
Pytorch | 从零构建EfficientNet对CIFAR10进行分类
Pytorch | 从零构建ParNet对CIFAR10进行分类

也实现了一些攻击算法:
Pytorch | 利用FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用BIM/I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用MI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用NI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VNI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用EMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击

本篇文章我们使用Pytorch实现AI-FGTM对CIFAR10上的ResNet分类器进行攻击.

CIFAR数据集

CIFAR-10数据集是由加拿大高级研究所(CIFAR)收集整理的用于图像识别研究的常用数据集,基本信息如下:

  • 数据规模:该数据集包含60,000张彩色图像,分为10个不同的类别,每个类别有6,000张图像。通常将其中50,000张作为训练集,用于模型的训练;10,000张作为测试集,用于评估模型的性能。
  • 图像尺寸:所有图像的尺寸均为32×32像素,这相对较小的尺寸使得模型在处理该数据集时能够相对快速地进行训练和推理,但也增加了图像分类的难度。
  • 类别内容:涵盖了飞机(plane)、汽车(car)、鸟(bird)、猫(cat)、鹿(deer)、狗(dog)、青蛙(frog)、马(horse)、船(ship)、卡车(truck)这10个不同的类别,这些类别都是现实世界中常见的物体,具有一定的代表性。

下面是一些示例样本:
在这里插入图片描述

AI-FGTM介绍

AI - FGTM(Adam Iterative Fast Gradient Tanh Method)是一种用于生成对抗样本的算法,旨在提高对抗样本的转移性和不可区分性。

算法流程

初始化

  1. 给定原始干净样本 x x x,令 x 0 a d v = x x_{0}^{a d v}=x x0adv=x
  2. 初始化第一时刻向量 m 0 = 0 m_{0}=0 m0=0,第二时刻向量 v 0 = 0 v_{0}=0 v0=0

迭代更新( t = 0 t = 0 t=0 T − 1 T - 1 T1

  1. 计算当前梯度
    • 计算对抗样本 x t a d v x_{t}^{a d v} xtadv 关于真实标签 y t r u e y^{true} ytrue 的损失函数(J)的梯度 ∇ x t a d v J ( x t a d v , y t r u e ) \nabla_{x_{t}^{a d v}} J(x_{t}^{a d v}, y^{true}) xtadvJ(xtadv,ytrue)
  2. 更新一阶矩 m t + 1 m_{t + 1} mt+1
    • 根据公式 m t + 1 = m t + μ 1 ⋅ ∇ x t a d v J ( x t a d v , y t r u e ) m_{t + 1}=m_{t}+\mu_{1} \cdot \nabla_{x_{t}^{a d v}} J(x_{t}^{a d v}, y^{true}) mt+1=mt+μ1xtadvJ(xtadv,ytrue) 计算 m t + 1 m_{t + 1} mt+1,其中 μ 1 \mu_{1} μ1 是一阶矩因子。
  3. 更新第二时刻向量 v t + 1 v_{t + 1} vt+1
    • 根据公式 v t + 1 = v t + μ 2 ⋅ ( ∇ x t a d v J ( x t a d v , y t r u e ) ) 2 v_{t + 1}=v_{t}+\mu_{2} \cdot (\nabla_{x_{t}^{a d v}} J(x_{t}^{a d v}, y^{true}))^{2} vt+1=vt+μ2(xtadvJ(xtadv,ytrue))2 计算 v t + 1 v_{t + 1} vt+1,其中 μ 2 \mu_{2} μ2 是二阶矩因子。
  4. 计算步长 α t \alpha_{t} αt
    • 根据公式 α t = ε ∑ t = 0 T − 1 1 − β 1 t + 1 ( 1 − β 2 t + 1 ) 1 − β 1 t + 1 ( 1 − β 2 t + 1 ) \alpha_{t}=\frac{\varepsilon}{\sum_{t = 0}^{T - 1} \frac{1 - \beta_{1}^{t + 1}}{\sqrt{(1 - \beta_{2}^{t + 1})}}} \frac{1 - \beta_{1}^{t + 1}}{\sqrt{(1 - \beta_{2}^{t + 1})}} αt=t=0T1(1β2t+1) 1β1t+1ε(1β2t+1) 1β1t+1 计算步长 α t \alpha_{t} αt,其中 ε \varepsilon ε 是扰动大小, β 1 \beta_{1} β1 β 2 \beta_{2} β2 是指数衰减率,且满足 ∑ t = 0 T − 1 α t = ε \sum_{t = 0}^{T - 1} \alpha_{t}=\varepsilon t=0T1αt=ε
  5. 更新对抗样本 x t + 1 a d v x_{t + 1}^{a d v} xt+1adv
    • 根据公式 x t + 1 a d v = C l i p ε x { x t a d v + α t ⋅ t a n h ( λ m t + 1 v t + 1 + δ ) } x_{t + 1}^{a d v}=Clip_{\varepsilon}^{x}\left\{x_{t}^{a d v}+\alpha_{t} \cdot tanh \left(\lambda \frac{m_{t + 1}}{\sqrt{v_{t + 1}}+\delta}\right)\right\} xt+1adv=Clipεx{xtadv+αttanh(λvt+1 +δmt+1)} 更新对抗样本 x t + 1 a d v x_{t + 1}^{a d v} xt+1adv,其中 C l i p ε x { x ′ } = m i n { 255 , x + ε , m a x { 0 , x − ε , x ′ } } Clip_{\varepsilon}^{x}\left\{x'\right\}=min \left\{255, x+\varepsilon, max \left\{0, x-\varepsilon, x'\right\}\right\} Clipεx{x}=min{255,x+ε,max{0,xε,x}} 用于裁剪样本, λ \lambda λ 是尺度因子, δ = 1 0 − 8 \delta = 10^{-8} δ=108

迭代完成

返回最终的对抗样本 x a d v = x T a d v x^{a d v}=x_{T}^{a d v} xadv=xTadv

在每次迭代中,AI - FGTM先计算当前梯度,然后利用梯度信息更新第一时刻向量和第二时刻向量,接着计算动态步长,最后根据这些信息通过tanh函数和裁剪操作更新对抗样本。通过这样的迭代过程,AI - FGTM旨在生成具有更高转移性和不可区分性的对抗样本。

AI-FGTM代码实现

AI-FGTM算法实现

import torch
import torch.nn as nn
from math import sqrt

def AI_FGTM(model, criterion, original_images, labels, epsilon, num_iterations=10, beta1=0.9, beta2=0.999, mu1=0.9, mu2=0.999, lambda_=1.0):
    """
    AI-FGTM (Adam Iterative Fast Gradient Tanh Method)

    参数:
    - model: 要攻击的模型
    - criterion: 损失函数
    - original_images: 原始图像
    - labels: 原始图像的标签
    - epsilon: 最大扰动幅度
    - num_iterations: 迭代次数
    - beta1: Adam算法中的第一指数衰减率
    - beta2: Adam算法中的第二指数衰减率
    - mu1: 第一时刻因子
    - mu2: 第二时刻因子
    - lambda_: 尺度因子
    """
    # 初始化对抗样本为原始图像
    perturbed_images = original_images.clone().detach().requires_grad_(True)
    m = torch.zeros_like(original_images).detach().to(original_images.device)
    v = torch.zeros_like(original_images).detach().to(original_images.device)

    for t in range(num_iterations):
        # 计算当前步长
        step_size = epsilon * (1 - beta1 ** (t + 1)) / (sqrt(1 - beta2 ** (t + 1))) * sum((1 - beta1 ** (i + 1)) / sqrt(1 - beta2 ** (i + 1)) for i in range(num_iterations))

        # 前向传播
        outputs = model(perturbed_images)
        loss = criterion(outputs, labels)

        model.zero_grad()
        loss.backward()

        data_grad = perturbed_images.grad.data

        # 更新一阶矩m
        m = mu1 * m + (1 - mu1) * data_grad
        # 更新二阶矩v
        v = mu2 * v + (1 - mu2) * data_grad ** 2

        # 使用tanh函数计算更新方向
        update_direction = torch.tanh(lambda_ * m / (torch.sqrt(v) + 1e-8))

        # 更新对抗样本
        perturbed_images = perturbed_images + step_size * update_direction
        # 裁剪对抗样本,使其在原始图像的epsilon范围内
        perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)
        perturbed_images = perturbed_images.detach().requires_grad_(True)

    return perturbed_images

攻击效果

在这里插入图片描述

代码汇总

aifgtm.py

import torch
import torch.nn as nn
from math import sqrt

def AI_FGTM(model, criterion, original_images, labels, epsilon, num_iterations=10, beta1=0.9, beta2=0.999, mu1=0.9, mu2=0.999, lambda_=1.0):
    """
    AI-FGTM (Adam Iterative Fast Gradient Tanh Method)

    参数:
    - model: 要攻击的模型
    - criterion: 损失函数
    - original_images: 原始图像
    - labels: 原始图像的标签
    - epsilon: 最大扰动幅度
    - num_iterations: 迭代次数
    - beta1: Adam算法中的第一指数衰减率
    - beta2: Adam算法中的第二指数衰减率
    - mu1: 第一时刻因子
    - mu2: 第二时刻因子
    - lambda_: 尺度因子
    """
    # 初始化对抗样本为原始图像
    perturbed_images = original_images.clone().detach().requires_grad_(True)
    m = torch.zeros_like(original_images).detach().to(original_images.device)
    v = torch.zeros_like(original_images).detach().to(original_images.device)

    for t in range(num_iterations):
        # 计算当前步长
        step_size = epsilon * (1 - beta1 ** (t + 1)) / (sqrt(1 - beta2 ** (t + 1))) * sum((1 - beta1 ** (i + 1)) / sqrt(1 - beta2 ** (i + 1)) for i in range(num_iterations))

        # 前向传播
        outputs = model(perturbed_images)
        loss = criterion(outputs, labels)

        model.zero_grad()
        loss.backward()

        data_grad = perturbed_images.grad.data

        # 更新一阶矩m
        m = mu1 * m + (1 - mu1) * data_grad
        # 更新二阶矩v
        v = mu2 * v + (1 - mu2) * data_grad ** 2

        # 使用tanh函数计算更新方向
        update_direction = torch.tanh(lambda_ * m / (torch.sqrt(v) + 1e-8))

        # 更新对抗样本
        perturbed_images = perturbed_images + step_size * update_direction
        # 裁剪对抗样本,使其在原始图像的epsilon范围内
        perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)
        perturbed_images = perturbed_images.detach().requires_grad_(True)

    return perturbed_images

train.py

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import ResNet18


# 数据预处理
transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

# 加载Cifar10训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)

# 定义设备(GPU或CPU)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 初始化模型
model = ResNet18(num_classes=10)
model.to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

if __name__ == "__main__":
    # 训练模型
    for epoch in range(10):  # 可以根据实际情况调整训练轮数
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            inputs, labels = data[0].to(device), data[1].to(device)

            optimizer.zero_grad()

            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
            if i % 100 == 99:
                print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss = {running_loss / 100}')
                running_loss = 0.0

    torch.save(model.state_dict(), f'weights/epoch_{epoch + 1}.pth')
    print('Finished Training')

advtest.py

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import *
from attacks import *
import ssl
import os
from PIL import Image
import matplotlib.pyplot as plt

ssl._create_default_https_context = ssl._create_unverified_context

# 定义数据预处理操作
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261))])

# 加载CIFAR10测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,
                                         shuffle=False, num_workers=2)

# 定义设备(GPU优先,若可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = ResNet18(num_classes=10).to(device)

criterion = nn.CrossEntropyLoss()

# 加载模型权重
weights_path = "weights/epoch_10.pth"
model.load_state_dict(torch.load(weights_path, map_location=device))


if __name__ == "__main__":
    # 在测试集上进行FGSM攻击并评估准确率
    model.eval()  # 设置为评估模式
    correct = 0
    total = 0
    epsilon = 16 / 255  # 可以调整扰动强度
    for data in testloader:
        original_images, labels = data[0].to(device), data[1].to(device)
        original_images.requires_grad = True
        
        attack_name = 'AI-FGTM'
        if attack_name == 'FGSM':
            perturbed_images = FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'BIM':
            perturbed_images = BIM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'MI-FGSM':
            perturbed_images = MI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'NI-FGSM':
            perturbed_images = NI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'PI-FGSM':
            perturbed_images = PI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'VMI-FGSM':
            perturbed_images = VMI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'VNI-FGSM':
            perturbed_images = VNI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'EMI-FGSM':
            perturbed_images = EMI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'AI-FGTM':
            perturbed_images = AI_FGTM(model, criterion, original_images, labels, epsilon)
        
        perturbed_outputs = model(perturbed_images)
        _, predicted = torch.max(perturbed_outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    accuracy = 100 * correct / total
    # Attack Success Rate
    ASR = 100 - accuracy
    print(f'Load ResNet Model Weight from {weights_path}')
    print(f'epsilon: {epsilon:.4f}')
    print(f'ASR of {attack_name} : {ASR :.2f}%')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/941921.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++程序启动报错和启动失败的常见原因分析与排查经验总结

目录 1、概述 2、程序启动报错的原因分析与排查方法 2.1、程序启动时报找不到依赖的dll库 2.1.1、找不到C/C运行时库 2.1.2、找不到依赖的业务库 2.2、程序启动时报在依赖的dll库中找不到接口 2.3、程序启动时报0xC000007B错误码 3、程序启动不了(启动失败&…

《通义千问AI落地—中》:前端实现

一、前言 本文源自微博客且已获授权,请尊重版权. 书接上文,上文中,我们介绍了通义千问AI落地的后端接口。那么,接下来我们将继续介绍前端如何调用接口以及最后的效果;首先看效果: 上述就是落地到本微博客以后的页面效果…

Python OCR 文字识别

一.引言 文字识别,也称为光学字符识别(Optical Character Recognition, OCR),是一种将不同形式的文档(如扫描的纸质文档、PDF文件或数字相机拍摄的图片)中的文字转换成可编辑和可搜索的数据的技术。随着技…

闯关leetcode——3158. Find the XOR of Numbers Which Appear Twice

大纲 题目地址内容 解题代码地址 题目 地址 https://leetcode.com/problems/find-the-xor-of-numbers-which-appear-twice/description/ 内容 You are given an array nums, where each number in the array appears either once or twice. Return the bitwise XOR of all …

深度学习中的并行策略概述:2 Data Parallelism

深度学习中的并行策略概述:2 Data Parallelism 数据并行(Data Parallelism)的核心在于将模型的数据处理过程并行化。具体来说,面对大规模数据批次时,将其拆分为较小的子批次,并在多个计算设备上同时进行处…

shiro权限校验demo

这里通过链式hashmap添加进去接口权限,用安全管理器设置过滤,并且设置登录跳转(登录页面需要自己写,shiro不提供,不像springboot那样智能) 效果如下: 点击add和update均跳转到如下登录页面 那么…

基于单片机的多功能智能小车(论文+源码)

1.系统整体方案 此次多功能智能小车的设计系统,其整个控制电路的框架如下图所示。整个系统采用STC89C52单片机为控制器其中:LCD液晶负责显示当前信息,蜂鸣器负责特殊情况下进行报警提醒,红外遥控模块方便用户进行远程操作小车,电机模块拟采用前驱的方式…

Log4j1.27配置日志输出级别不起效

起因:构建独立版本debezuim使用时,日志一直打印debug信息。 原因:包冲突问题,进行排包操作。 参考log4j日志级别配置完成后不生效 系统一直打印debug日志_log4j不起作用-CSDN博客 1、application.properties logging.configc…

LabVIEW如何学习FPGA开发

FPGA(现场可编程门阵列)开发因其高性能、低延迟的特点,在实时控制和高速数据处理领域具有重要地位。LabVIEW FPGA模块为开发者提供了一个图形化编程平台,降低了FPGA开发的门槛。本篇文章将详细介绍LabVIEW FPGA开发的学习路径&…

shell脚本定义特殊字符导致执行mysql文件错误的问题

记得有一次版本发布过程中有提供一个sh脚本用于一键执行sql文件,遇到一个shell脚本定义特殊字符的问题,sh脚本的内容类似以下内容: # 数据库ip地址 ip"127.0.0.1" # 数据库密码 cmdbcmdb!#$! smsm!#$!# 执行脚本文件(参…

Jimureport h2命令执行分析记录

首先找testConnection接口,前面进行了jimureport-spring-boot-starter-1.5.8.jar反编译查找,接口找到发现请求参数是json var1是JmreportDynamicDataSourceVo类型,也就是如上图的dbSource,根据打印的结果可以知道这里是local cac…

蓝牙协议——音量控制

手机设置绝对音量 使用Ellisys查看如下: 使用Wireshark查看如下: 音量的量程是128,0x44的十进制是68,53%或54%音量的计算如下: 68 / 128 53.125%耳机设置绝对音量

熊军出席ACDU·中国行南京站,详解SQL管理之道

12月21日,2024 ACDU中国行在南京圆满收官,本次活动分为三个篇章——回顾历史、立足当下、展望未来,为线上线下与会观众呈现了一场跨越时空的技术盛宴,吸引了众多业内人士的关注。云和恩墨副总经理熊军出席此次活动并发表了主题演讲…

提高保养效率:4S店预约系统的设计与开发

3.1可行性分析 开发者在进行开发系统之前,都需要进行可行性分析,保证该系统能够被成功开发出来。 3.1.1技术可行性 开发该4S店预约保养系统所采用的技术是vue和MYSQL数据库。计算机专业的学生在学校期间已经比较系统的学习了很多编程方面的知识&#xff…

简单了解函数递归

函数递归 一 了解函数递归二 深入理解函数递归的思想三 函数递归的优缺点 一 了解函数递归 首先&#xff0c;我们通过一个简单的代码来理解函数递归。 #include<stdio.h> int Func() {return Func(n1); } int main() {int n 5;Func(n);return 0; }这个就是函数递归&am…

重温设计模式--设计模式七大原则

文章目录 1、开闭原则&#xff08;Open - Closed Principle&#xff0c;OCP&#xff09;定义&#xff1a;示例&#xff1a;好处&#xff1a; 2、里氏替换原则&#xff08;Liskov Substitution Principle&#xff0c;LSP&#xff09;定义&#xff1a;示例&#xff1a;好处&#…

GiliSoft AI Toolkit v10.1

Gilisoft AI Toolkit是一个综合性的软件包&#xff0c;为企业和个人提供了一个集成人工智能技术到其工作流程中的解决方案。该软件包包括了多种与人工智能相关的工具&#xff0c;如聊天机器人、光学字符识别(OCR)、文本到语音(TTS)和自动语音识别(ASR)软件。它的目的是通过各种…

四种自动化测试模型实例及优缺点详解

一、线性测试 1.概念&#xff1a; 通过录制或编写对应应用程序的操作步骤产生的线性脚本。单纯的来模拟用户完整的操作场景。 &#xff08;操作&#xff0c;重复操作&#xff0c;数据&#xff09;都混合在一起。 2.优点&#xff1a; 每个脚本相对独立&#xff0c;且不产生…

git自己模拟多人协作

目录 一、项目克隆 二、多人协作 1.创建林冲仓库 2.协作处理 3.冲突处理 三、分支推送协作 1.创建develop分支 2.发现git push无法把develop推送到远程 ​编辑 3.本地的分支推送到远程分支 四、分支拉取协作 五、远程分支的删除 远程仓库用的gitee 一、项目克隆 …

数据结构---------二叉树前序遍历中序遍历后序遍历

以下是用C语言实现二叉树的前序遍历、中序遍历和后序遍历的代码示例&#xff0c;包括递归和非递归&#xff08;借助栈实现&#xff09;两种方式&#xff1a; 1. 二叉树节点结构体定义 #include <stdio.h> #include <stdlib.h>// 二叉树节点结构体 typedef struct…