easegen将教材批量生成可控ppt课件方案设计

之前客户提出过一个需求,就是希望可以将一本教材,快速的转换为教学ppt,虽然通过人工+程序脚本的方式,已经实现了该功能,但是因为没有做到通用,每次都需要修改脚本,无法让客户自行完成所有流程,所以决定重新设计一下这个功能,最终目标就是用户自行上传一本书,可以自动生成所有的ppt。 首先,我们设计一下方案。先与gpt聊聊,看看他的想法。

产品方案

一、产品目标

目标

  • 用户上传一本 Word/PDF 电子书,我们的程序将其 自动化地转成 PPT。
  • 整个流程尽量减少用户手动干预,通过 大模型接口服务的配合,实现自动化和规范化处理。

核心需求

  1. 将电子文档(Word/PDF)内容提取,并 准确保留层级结构
  2. 自动拆分文档到合适的粒度(如:章/节)。
  3. 基于大模型,规范化并生成 适合 PPT 展示的标题和段落内容。
  4. 通过 AIPPT 服务(如「文多多easegen.docmee.cn」)选择/应用模板,一键生成 PPT。

二、整体流程设计

为了更好地拆解每一步的逻辑,下面给出一个从输入到输出的可能流程。可以视为 MVP(最小可行产品)的流程,也可以在此基础上扩展更多的功能。

1. 上传电子文档

  1. 用户上传:用户在前端界面上传 Word 或 PDF 文件。
  2. 文档接收:后端服务器接收文件,进行排队/存储。
  3. 格式识别:如果是 PDF,则需要做 OCR 或基于 PDF 解析工具(如 PyPDF2、pdfplumber 等)提取文本及结构;如果是 Word,利用 Python-docx 或者其他库来读取段落、标题信息。

注意点

  • PDF 的解析准确性和对“标题层级”的捕捉需要仔细处理;Word 相对更容易获取结构。
  • 大批量页数的文档,可能需要异步处理或者任务队列提高效率。

2. 转换为 Markdown

  1. 提取文本 + 结构:识别文档中的标题、段落、列表、图片等内容,按照 层级做一个内部数据结构存储(如树形结构:章 -> 节 -> 小节)。
  2. 生成 Markdown:将文档中每个标题、段落转换为相应的 Markdown 语法。
    • 例如“第一章”用 # 第一章,如果有节则用 ## 标记,依此类推。
    • 对段落使用普通文本行表示,对列表、引用等可以使用 Markdown 语法进行标记。

注意点

  • 标题的级别需要先简单做规则匹配(如大纲级别或者正则)或通过自然语言模型判断(如 GPT、BERT),以尽量保证结构准确。
  • 如果有插图(如 PDF 中插画或 Word 中的图片),需要决定是否保留在 Markdown 中(可以用 ![图片说明](图片链接) 标记),或暂时忽略。

3. 拆分 Markdown

  1. 按规则拆分:如按照 或者 进行拆分,拆分成多个独立的 Markdown 文件(或内存对象),以方便后续处理。
  2. 存储管理:将拆分后的文档保存到数据库或对象存储中,记录各自的标题、文本内容、层级信息等元数据。
  3. 处理顺序:可并行或顺序对每个部分进行后续处理。

4. 标题和内容的规范化

  1. 调用大模型:对于每个拆分单元,调用大模型(如 GPT-4 / ChatGPT)对标题进行重新整理或概括。
    • 例如,若标题写法不统一:有些写了“第一章”,有些只写了“1.1”,或标题过长;则让大模型输出一个“最合适、最简洁/最贴切的标题”。
    • 同时可以让大模型对段落做简要摘要,或者做对 PPT 友好的精简。
  2. 保证一致性:可能需要一些 prompt 工程,给大模型输入“当前已有标题”和“整体风格”,告诉它要以何种风格输出标题(如“统一中文,尽量简洁”)。
  3. 可选:内容精炼:如果需要做 PPT,就需要精炼文字;也可以让大模型输出要点式、分点式的内容。

注意点

  • 标题太长或不符合 PPT 场景时,需要做裁剪或优化。
  • 有些用户可能想保留章节编号等信息,需要在设计 prompt 时设置“保留”或“移除”等。

5. 生成 PPT

  1. 选择 PPT 模板
    • 后端可以直接调用 AIPPT 服务(如「文多多」)的 API,传递模板 ID 或者让用户自己上传模板 PPT 文件(需要解析或兼容该模板)。
  2. 组装 PPT
    • 通过 AIPPT 的接口把每个拆分单元的标题、段落、图片等按照一定的版式规则填充到 PPT 中的占位符。
    • 如果要有更多炫酷效果,需要先在模板里定义布局,然后通过接口插入对应的文字和图片。
  3. 生成下载链接
    • 生成好的 PPT 存储在后端或第三方对象存储中,返回下载链接或在前端直接预览。

注意点

  • 不同章节可以采用不同的版式(如大标题页 vs 内容页 vs 图片页),需要在产品设计中给用户更多自定义或自动判断的选项。
  • 需要接口配合,不同 AIPPT 平台的对接方式略有差异。

三、技术架构概述

从整体上看,可以考虑分为前端后端第三方服务三个模块:

  1. 前端

    • 提供上传文件界面、进度条或任务队列状态展示。
    • 设置 PPT 模板选择/管理界面,或可自定义一些基础参数(字号、配色、页眉页脚等)。
    • 提供生成完成后的 PPT 预览和下载。
  2. 后端

    • 文件解析模块:用相应的 Python 库或第三方服务进行 Word/PDF 解析,输出结构化数据。
    • Markdown 生成和拆分模块:将结构化数据转换为 Markdown,按章/节拆分。
    • 大模型调用模块:对接 GPT 系列或其他大模型 API,对标题和内容做规范化处理。
    • PPT 生成模块:对接「文多多」等 AIPPT 接口,通过 API 创建 PPT 并填充内容。
    • 数据库与存储:存储解析后的文本和生成后的 PPT 文件。
  3. 第三方服务(AIPPT 等)

    • 与 AIPPT 平台(如「文多多」)的接口对接:上传内容、选择模板、生成 PPT、返回 PPT 链接。

可选的扩展

  • 如果用户对 PPT 排版有较高要求,后端可以自建一个 PPT 生成服务,基于 python-pptx 等库进行灵活的版面布局。
  • 还可以接入更多大模型能力,如自动插入合适的图片/图标、自动生成演讲者备注等。

四、产品形态与交互

MVP 版交互

  1. 用户进入页面,上传电子书(Word/PDF)。
  2. 等待文档解析完成(队列/异步)。
  3. 系统展示检测到的 章节结构(可视化大纲),让用户有机会手动微调(如删除某些章节,或修正某些标题)。
  4. 用户点击“生成 PPT”按钮;选择或上传模板;设置一些偏好(如字号、主题色等)。
  5. 系统调用大模型对标题和内容进行精简/规范化;调用 AIPPT 接口生成 PPT;生成下载地址。
  6. 用户可以预览并下载 PPT。

增强版交互思路

  • 模板市场:用户可浏览各种不同风格的 PPT 模板,一键套用。
  • 可视化编辑:生成 PPT 之前,前端展示“预览”页,允许用户拖拽/编辑页面布局、文字样式、背景等。
  • 大模型再编辑:用户对某些页面不满意,可点一下“重新生成文案”按钮,实时调用大模型给出新的文字排版。
  • 协同:多用户协同编辑同一本书,最后同步生成 PPT。

五、可能的难点与挑战

  1. PDF 结构化:如果书是 PDF 格式,可能存在 PDF 制作不规范、文字排版混乱等问题,标题与正文区分不明显,需要一定的 NLP 或启发式算法来识别。
  2. 章节层级准确:若原文档标题标注不规范,需要大模型/NLP 进行多轮判断,可能存在一定的错误率。
  3. 标题/内容的自动化生成质量:大模型能够简化标题,但有可能失去用户想要保留的信息,需要在产品上提供“是否保持原文”/“简化改写”/“翻译”等选项。
  4. PPT 生成接口的灵活度:如果第三方 AIPPT 平台的接口不够灵活,可能无法做更精细的排版,需要自己实现或与更多平台做兼容。
  5. 效率和成本:长文档调用大模型会带来较高的 API 成本,也需要考虑速度和并发问题。

六、后续可扩展方向

  1. 支持多语言:不仅限于中文书,英文或其他语言同样可以自动生成相应 PPT。
  2. 支持更多输出形式:不仅是 PPT,也可以生成 PDF 报告、HTML 网页等。
  3. 知识库和搜索:把拆分后的文档内容建立知识库,用户可以在生成 PPT 前后进行搜索/问答。
  4. 多种总结粒度:PPT 只是一种表达方式,或许可以同时生成“精华版”和“详细版”,根据用户需求选择不同程度的精简。
  5. 数据分析:如果是教材或商业文档,可以自动分析文档结构、关键词、知识点分布,形成更多增值服务。

七、总结

这套方案的关键是:

  1. 精确保留并提取文档层级结构
  2. 通过大模型进行标题/内容的统一和精简
  3. 对接可定制的 PPT 生成接口,实现“所见即所得”或者“一键生成”。

在产品的早期阶段,先实现基础流程(上传->解析->拆分->生成->下载),后续逐步增强可视化交互、模板管理、多语言支持等功能。

在实际落地时,还要注意性能、API 成本、错误率等现实问题。但如果能在技术和产品设计上规划合理,这将是一个有相当使用价值、也具备差异化竞争力的应用。


可以看到,gpt帮助生成了一份非常详细的产品方案,并且还给出了MVP的落地思路,真的非常棒,接下来,我们使用https://diagrammingai.com/生成一个流程图,可以看的更清晰

流程图

alt

将gpt的方案输入以后,快速的生成了一个流程图,可以更清晰的了解整体方案

动手

接下来我们就要开始动手实现了,因为已经有了一定的基础,所以我采用逆向的方式进行开发实现,方便每实现一个功能即可快速验证。

  • 第一步先实现标准格式markdown文本生成ppt;
  • 第二步实现markdown文本格式的校验和自动标准化
  • 第三步实现markdown文本的拆分
  • 第四步实现pdf转markdown
  • 然后实现前端页面部分的文件上传、转换、拆分、标准化、生成ppt
  • 最后针对某些难点如自定义规则拆分、格式标准化场景,通过agent的方式尽量实现自动化
alt

自我介绍 😎

我是一个AGI时代超级个体践行者,喜欢AI技术并且希望使用AI技术让我们的生活更加美好,欢迎有相同目标的朋友加好友我们一起前行。🤝

我可以提供AI大模型业务技术咨询产品设计产品落地。同时拥有数字人课程在线教育智慧知识库等产品。欢迎来撩。✉️✨

alt

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/941541.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AI,cursor快速上手思维导图

https://cursor101.com/zh/tutorial/learn-cursor-tab

Echarts实现大屏可视化

一、效果展示 二、简介 该项目涉及到的图表有: 渐变堆叠面积图中国地图涟漪特效散点图饼图横向柱状图竖向柱状图圆环饼图 该项目主要展示的是使用Echarts制作的大屏可视化,所用到的技术有: 2.1 前端: vue3、vite、echarts、pi…

ECharts关系图-关系图11,附视频讲解与代码下载

引言: 关系图(或称网络图、关系网络图)在数据可视化中扮演着至关重要的角色。它们通过节点(代表实体,如人、物体、概念等)和边(代表实体之间的关系或连接)的形式,直观地…

javaEE--计算机是如何工作的-1

目录 一.计算机的组成: 各组件的功能: 衡量cpu好坏的标准: 二.指令(instruction) 三.操作系统Operating System 四.进程/任务process/tesk 五.进程在系统中如何管理 1.进程在系统中的管理,从两个角度来分类: 2.进程控制块PCB(Process Control Block)) 3.P…

目标检测-R-CNN

R-CNN在2014年被提出,算法流程可以概括如下: 候选区域生成:利用选择性搜索(selective search)方法找出图片中可能存在目标的候选区域(region proposal) CNN网络提取特征:对候选区域进行特征提取(可以使用AlexNet、VGG等网络) 目…

Blender 中投影仪的配置与使用

Blender 中投影仪的配置与使用 Blenderdownloadbasic Projectordownloadinstallconfigure 利用Blender中的投影仪搭建一个简单的结构光仿真系统,通过调整被测对象的材质和投影仪位姿以及投影来获得不同的渲染图像。 Blender download 在官网中下载相应安装包&…

MYSQL慢查询日志(开启慢查询配置、explain执行计划SQL优化、各个字段详解、索引失效)

大家好,我是此林。 今天来分享一下MYSQL慢查询日志记录。 目录 1. 定义 2. 开启慢查询 方法一:命令行 方法二:修改配置文件 3. explain性能分析 4. 索引失效 1. 最左前缀法则 2. 对字段做运算、字段类型不匹配 3. 模糊匹配 4. OR…

Leetcode打卡:考场就坐

执行结果:通过 题目: 855 考场就坐 在考场里,有 n 个座位排成一行,编号为 0 到 n - 1。 当学生进入考场后,他必须坐在离最近的人最远的座位上。如果有多个这样的座位,他会坐在编号最小的座位上。(另外&am…

2024.2 ACM Explainability for Large Language Models: A Survey

Explainability for Large Language Models: A Survey | ACM Transactions on Intelligent Systems and Technology 问题 可解释性问题:大语言模型(LLMs)内部机制不透明,难以理解其决策过程,如在自然语言处理任务中&…

解决“SVN无法上传或下载*.so、*.a等二进制文件“问题

今天,在使用Subversion提交代码到服务器时,发现无法提交*.a、*.so等二进制文件,右击这些文件,发现其属性为ignores。     问题原因:SVN的配置文件里,屏蔽了*.a、*.so文件的上传与下载,并把这些…

层序遍历练习

层次遍历 II 给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历) 思路 相对于102.二叉树的层序遍历,就是最后把result数组反转一下就可以了。 C代码&…

京东大数据治理探索与实践 | 京东零售技术实践

01背景和方案 在当今的数据驱动时代,数据作为关键生产要素之一,其在商业活动中的战略价值愈加凸显,京东也不例外。 作为国内领先的电商平台,京东在数据基础设施上的投入极为巨大,涵盖数万台服务器、数 EB 级存储、数百…

【论文阅读笔记】Learning to sample

Learning to sample 前沿引言方法问题声明S-NET匹配ProgressiveNet: sampling as ordering 实验分类检索重建 结论附录 前沿 这是一篇比较经典的基于深度学习的点云下采样方法 核心创新点: 首次提出了一种学习驱动的、任务特定的点云采样方法引入了两种采样网络&…

[AIGC知识] layout理解

前言 要开组会了,随便讲个凑数吧。 参考论文 https://arxiv.org/html/2303.17189? 什么是layout数据? 像下图这样,Layout是每个图片的布局,其中包含一些物体的相应边界框和类别 layout信息如何整合表示并作为条件加入到网络…

【macos java反编译工具Java Decompiler】

mac上能用的反编译工具 https://java-decompiler.github.io/

C#+OpenCv深度学习开发(常用模型汇总)

在使用 OpenCvSharp 结合深度学习进行机器视觉开发时,有许多现成的模型可以使用。以下是一些常用的深度学习模型,适用于不同的机器视觉任务,包括物体检测、图像分类和分割等。 使用示例 在 OpenCvSharp 中加载和使用这些模型的基本示例&…

【生成模型之七】Classifier-free diffusion guidance

论文:classifier-free diffusion guidance 一、Background 分类器引导是一种最近引入的方法,用于在训练后的条件扩散模型中权衡样本丰富度和样本保真度,其思想与其他类型生成模型中的低温采样或截断相同。 分类器引导将扩散模型的分数估计…

【LeetCode每日一题】——415.字符串相加

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时空频度】九【代码实现】十【提交结果】 一【题目类别】 字符串 二【题目难度】 简单 三【题目编号】 415.字符串相加 四【题目描述】 给定两个字符…

Why SAP TM?

最近发现跟 SAP TM 的集成越来越多了,并且发现这模块还挺大,很难一下子理解。TM(Transportation Management)- 顾名思义就是“运输管理”。起初很难想象为啥 SAP 会浪费大量的时间和精力开发“运输管理”,从而只是为了…

开源鸿蒙 5.0 正式版发布

在2024年的开放原子开发者大会上,开源鸿蒙5.0版本正式发布啦!这个版本是一个比较大的升级,性能和功能都上了一个新台阶,让我们一起来看看都有哪些亮点。 首先,开源鸿蒙这个项目,从最初的700万行代码&#x…