LSTM实现天气模型训练与预测

要实现一个天气预测的模型,并确保该模型可以反复进行训练和更新,先设计:

设计方案

  1. 数据获取

    • 使用公开的天气数据API(例如OpenWeather API或其他类似的API)获取天气数据。
    • 确保数据以合适的格式(如CSV或JSON)进行存储和处理,数据应该包含时间戳、温度、湿度、降水量等字段。
  2. 数据预处理

    • 对天气数据进行清洗,包括处理缺失值、异常值、日期时间格式处理等。
    • 将数据转化为适合机器学习模型训练的格式,进行特征工程(如标准化、归一化等)。
  3. 模型选择

    • 使用时间序列预测模型(如ARIMA、Prophet)或机器学习模型(如Random Forest、XGBoost等)来进行天气预测。
    • 如果需要处理多种特征(如温度、湿度等),可以选择集成方法或深度学习模型(如LSTM、GRU等)。
  4. 训练与评估

    • 将数据分为训练集和测试集,进行模型训练,并使用交叉验证等方法来评估模型性能。
    • 训练后保存模型(可以使用joblib、pickle等工具)以便反复使用。
  5. 模型更新

    • 定期获取新的数据并用其进行模型更新。
    • 需要设置定时任务,自动下载新数据并更新模型。

详细实现

以下是设计后的方案和代码:

项目文件夹结构

weather-prediction/
├── data/
│   ├── raw/                  # 原始天气数据文件
│   ├── processed/            # 预处理后的数据文件
│   └── model/                # 存储训练好的模型
├── scripts/
│   ├── download_weather_data.py   # 下载天气数据并保存为CSV
│   ├── preprocess_data.py         # 数据预处理脚本
│   ├── train_model.py            # 训练LSTM模型脚本
│   ├── continue_training.py      # 持续训练脚本
│   └── predict_weather.py        # 预测天气脚本
├── models/
│   ├── weather_lstm_model.h5    # 保存的LSTM模型
└── requirements.txt           # 项目依赖包

详细步骤

  1. 下载天气数据脚本(download_weather_data.py:从API获取并保存到CSV文件。
  2. 数据预处理脚本(preprocess_data.py:加载CSV,处理数据并保存为标准格式。
  3. 训练模型脚本(train_model.py:使用LSTM模型进行训练并保存模型。
  4. 持续训练脚本(continue_training.py:加载已保存的模型,使用新数据进行模型更新。
  5. 预测天气脚本(predict_weather.py:使用训练好的模型进行天气预测。

1. 下载天气数据并保存到CSV文件(download_weather_data.py

import requests
import pandas as pd
import os
from datetime import datetime

# 下载天气数据
def fetch_weather_data(api_key, city="Beijing"):
    url = f"http://api.openweathermap.org/data/2.5/forecast?q={city}&appid={api_key}&units=metric"
    response = requests.get(url)
    data = response.json()
    weather_data = []

    for item in data['list']:
        weather_data.append({
            "datetime": item['dt_txt'],
            "temperature": item['main']['temp'],
            "humidity": item['main']['humidity'],
            "pressure": item['main']['pressure'],
            "wind_speed": item['wind']['speed'],
            "rain": item.get('rain', {}).get('3h', 0)
        })

    df = pd.DataFrame(weather_data)
    return df

def save_weather_data_to_csv(df, filename="../data/raw/weather_data.csv"):
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    df.to_csv(filename, index=False)
    print(f"Weather data saved to {filename}")

def main():
    api_key = "your_openweather_api_key"
    city = "Beijing"
    df = fetch_weather_data(api_key, city)
    save_weather_data_to_csv(df)

if __name__ == "__main__":
    main()

2. 数据预处理脚本(preprocess_data.py

import pandas as pd
from sklearn.preprocessing import StandardScaler
import os

def load_data(filename="../data/raw/weather_data.csv"):
    df = pd.read_csv(filename)
    df['datetime'] = pd.to_datetime(df['datetime'])
    return df

def preprocess_data(df):
    # 时间特征处理
    df['hour'] = df['datetime'].dt.hour
    df['day'] = df['datetime'].dt.dayofweek
    df['month'] = df['datetime'].dt.month
    df['year'] = df['datetime'].dt.year

    # 特征选择
    features = ['temperature', 'humidity', 'pressure', 'wind_speed', 'rain', 'hour', 'day', 'month', 'year']
    df = df[features]

    # 标准化特征
    scaler = StandardScaler()
    df[features] = scaler.fit_transform(df[features])

    return df, scaler

def save_processed_data(df, filename="../data/processed/processed_weather_data.csv"):
    df.to_csv(filename, index=False)
    print(f"Processed data saved to {filename}")

def main():
    df = load_data()
    processed_data, scaler = preprocess_data(df)
    save_processed_data(processed_data)
    return scaler

if __name__ == "__main__":
    main()

3. 训练LSTM模型脚本(train_model.py

import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
from sklearn.model_selection import train_test_split
import os

def load_processed_data(filename="../data/processed/processed_weather_data.csv"):
    return pd.read_csv(filename)

def prepare_lstm_data(df, time_steps=10):
    X, y = [], []
    for i in range(time_steps, len(df)):
        X.append(df.iloc[i-time_steps:i, :-1].values)  # 选择过去的时间步作为特征
        y.append(df.iloc[i, 0])  # 预测当前温度
    X, y = np.array(X), np.array(y)
    return X, y

def create_lstm_model(input_shape):
    model = Sequential([
        LSTM(50, return_sequences=True, input_shape=input_shape),
        Dropout(0.2),
        LSTM(50, return_sequences=False),
        Dropout(0.2),
        Dense(1)
    ])
    model.compile(optimizer='adam', loss='mean_squared_error')
    return model

def train_model(X, y):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    model = create_lstm_model((X_train.shape[1], X_train.shape[2]))
    model.fit(X_train, y_train, epochs=20, batch_size=32, validation_data=(X_test, y_test))
    return model

def save_model(model, filename="../models/weather_lstm_model.h5"):
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    model.save(filename)
    print(f"Model saved to {filename}")

def main():
    df = load_processed_data()
    X, y = prepare_lstm_data(df)
    model = train_model(X, y)
    save_model(model)

if __name__ == "__main__":
    main()

4. 持续训练脚本(continue_training.py

import tensorflow as tf
import pandas as pd
from train_model import load_processed_data, prepare_lstm_data, create_lstm_model, save_model
import os

def load_model(filename="../models/weather_lstm_model.h5"):
    return tf.keras.models.load_model(filename)

def continue_training(model, df, time_steps=10):
    X, y = prepare_lstm_data(df, time_steps)
    model.fit(X, y, epochs=10, batch_size=32)
    return model

def main():
    df = load_processed_data()
    model = load_model()
    updated_model = continue_training(model, df)
    save_model(updated_model)

if __name__ == "__main__":
    main()

5. 预测天气脚本(predict_weather.py

import tensorflow as tf
import pandas as pd
from train_model import prepare_lstm_data

def load_model(filename="../models/weather_lstm_model.h5"):
    return tf.keras.models.load_model(filename)

def predict_weather(model, df, time_steps=10):
    X, _ = prepare_lstm_data(df, time_steps)
    predictions = model.predict(X)
    return predictions

def main():
    df = pd.read_csv("../data/processed/processed_weather_data.csv")
    model = load_model()
    predictions = predict_weather(model, df)
    print(predictions)

if __name__ == "__main__":
    main()

6. 依赖文件(requirements.txt

pandas
numpy
scikit-learn
tensorflow
requests

代码说明

  1. 下载天气数据并保存

    • download_weather_data.py脚本从OpenWeather API获取数据并保存为CSV文件。
  2. 数据预处理

    • preprocess_data.py脚本进行数据清洗、标准化以及特征处理,保存为预处理过的CSV文件。
  3. 训练LSTM模型

    • train_model.py通过使用过去的时间序列数据来训练LSTM模型,并保存模型。
  4. 持续训练

    • continue_training.py脚本加载已保存的模型,并继续使用新数据进行训练。
  5. 预测天气

    • predict_weather.py加载训练好的模型并对新数据进行天气预测。

没有谁生来就是优秀的人,你可以不优秀,但是不可以失去动力,不求上进,只会荒废一生。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/938717.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【鸿睿创智开发板试用】移植OpenCV 4到OpenHarmony 4.1

目录 目录 引言 编译系统镜像 (1) 下载代码后解压SDK (2) 下载docker镜像   (3) 编译OH 编译OpenCV 下载OpenCV源代码 构建编译配置文件 执行编译命令 安装库和头文件 测试 结语 引言 最近有个需求是在基于RK3568的OpenHarmony 4.1系统中使用OpenCV&#xff0c…

【HarmonyOS之旅】HarmonyOS开发基础知识(一)

目录 1 -> 应用基础知识 1.1 -> 用户应用程序 1.2 -> 用户应用程序包结构 1.3 -> Ability 1.4 -> 库文件 1.5 -> 资源文件 1.6 -> 配置文件 1.7 -> pack.info 1.8 -> HAR 2 -> 配置文件简介 2.1 -> 配置文件的组成 3 -> 配置文…

【机器人】Graspness 端到端抓取点估计 | 环境搭建 | 模型推理测试

在复杂场景中实现抓取检测,Graspness是一种端到端的方法; 输入点云数据,输出抓取角度、抓取深度、夹具宽度等信息。 开源地址:https://github.com/rhett-chen/graspness_implementation?tabreadme-ov-file 论文地址&#xff1…

B站bilibili视频转文字字幕下载方法

本文将讲述介绍一种使用本地工具如何快速的下载B站的字幕为本地文本文件的方法。 通常获取B站字幕需要在浏览器中安装第三方插件,通过插件获取字幕。随着大模型,生成式AI,ChatGPT的应用,B站也提供了AI小助手对视频的内容进行总结…

CSS3 实现火焰-小火苗效果

创建 CSS3 火焰效果可以通过组合 CSS 动画、伪元素 和 渐变 来实现。以下是一个简单的实现步骤&#xff0c;展示如何制作动态火焰效果 1. HTML 结构 我们只需要一个简单的 div 容器&#xff1a; <div class"fire"></div>2. CSS 实现 基础样式 使用 …

新能源汽车充电需求攀升,智慧移动充电服务有哪些实际应用场景?

在新能源汽车行业迅猛发展的今天&#xff0c;智慧充电桩作为支持这一变革的关键基础设施&#xff0c;正在多个实际应用场景中发挥着重要作用。从公共停车场到高速公路服务区&#xff0c;从企业园区到住宅小区&#xff0c;智慧充电桩不仅提供了便捷的充电服务&#xff0c;还通过…

git remote -v(--verbose)显示你的 Git 仓库配置的远程仓库的详细信息

git remote -v 是一个 Git 命令&#xff0c;用于显示你的 Git 仓库配置的远程仓库的详细信息。 当你执行 git remote -v 命令时&#xff0c;你会看到类似以下的输出&#xff1a; origin https://github.com/your-username/your-repo.git (fetch) origin https://github.com…

Java Web项目部署教程简单实用

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c; 忍不住分享一下给大家。点击跳转到网站 学习总结 1、掌握 JAVA入门到进阶知识(持续写作中……&#xff09; 2、学会Oracle数据库入门到入土用法(创作中……&#xff09; 3、手把…

【爬虫一】python爬虫基础合集一

【爬虫一】python爬虫基础合集一 1. 网络请求了解1.1. 请求的类型1.2. 网络请求协议1.3. 网络请求过程简单图解1.4. 网络请求Headers(其中的关键字释义)&#xff1a;请求头、响应头 2. 网络爬虫的基本工作节点2.1. 了解简单网络请求获取响应数据的过程所涉及要点 1. 网络请求了…

清理C盘小记

突然C盘就爆满了&#xff0c;想当初还是给他预留了120G的空间&#xff0c;感觉到现在也不够用了&#xff0c;担心出现死机的情况就赶紧进行了清理。有一说一&#xff0c;清理回收站是真的有用。 参考&#xff1a;C盘清理指南&#xff0c;清理出30G起&#xff0c;超详细总结&am…

Ansible playbook 详解与实战操作

一、概述 playbook 与 ad-hoc 相比,是一种完全不同的运用 ansible 的方式&#xff0c;类似与 saltstack 的 state 状态文件。ad-hoc 无法持久使用&#xff0c;playbook 可以持久使用。 playbook 是由一个或多个 play 组成的列表&#xff0c;play 的主要功能在于将事先归并为一…

seata-2阶段提交-笔记3

本文属于B站图灵课堂springcloud笔记系列。 前面整理过2篇:seata 2阶段提交实现代码-笔记1-CSDN博客 扫描GlobalTransactional注解 seata 2阶段提交实现代码-笔记2-CSDN博客 TC生成XID&#xff0c;并保存到global_table表。 本篇继续整理 执行业务逻辑&#xff0c;提交本地…

Docker如何运行一个Java的jar包程序

Docker如何运行一个Java的jar包程序 1、jar包程序 2、start.sh运行jar包脚本 #!/bin/bash #进入目录 cd /app #1.下载SDK并安装 java -jar SDKDown1.4.jar #2.加载环境变量 export LD_LIBRARY_PATH/opt/casb/CipherSuiteSdk_linux/lib echo $LD_LIBRARY_PATH #3.执行SDK java …

Pycharm访问MongoDB数据库

MongoDB的基础操作 1. 创建连接 #导入pymongo中的用于操作数据库的客户端 from pymongo import MongoClient #创建客户端对象&#xff0c;连接MongoDB服务器 client MongoClient(mongodb://admin:admin123456localhost:27017) 2. 数据的增删改查 2.1 数据的写入 from mon…

【Python】编写一个函数,将指定的罗马字符转换为数字的形式。

#编写一个函数&#xff0c;将指定的罗马字符转换为数字的形式。R2N {I:1, V:5, X:10, L:50, C:100, D:500, M:1000}def roman2num(s):r 0n len(s)for i, ch in enumerate(s):v R2N[ch]if i < n-1 and v < R2N[s[i1]]:r - velse:r vreturn r;s input("请输入一…

【深度学习总结】使用PDF构建RAG:结合Langchain和通义千问

【深度学习总结】使用PDF构建RAG&#xff1a;结合Langchain和通义千问 使用平台&#xff1a;趋动云&#xff0c;注册送算力 前言 在大型语言模型&#xff08;LLMs&#xff09;应用领域&#xff0c;我们面临着大量挑战&#xff0c;从特定领域知识的匮乏到信息准确性的窘境&am…

GB28181系列三:GB28181流媒体服务器ZLMediaKit

我的音视频/流媒体开源项目(github) GB28181系列目录 目录 一、ZLMediaKit介绍 二、 ZLMediaKit安装、运行(Ubuntu) 1、安装 2、运行 3、配置 三、ZLMediaKit使用 一、ZLMediaKit介绍 ZLMediaKit是一个基于C11的高性能运营级流媒体服务框架&#xff0c;项目地址&#xf…

React 第十七节 useMemo用法详解

概述 useMemo 是React 中的一个HOOK&#xff0c;用于根据依赖在每次渲染时候缓存计算结果&#xff1b; 大白话就是&#xff0c;只有依赖项发生变化时候&#xff0c;才会重新渲染为新计算的值&#xff0c;否则就还是取原来的值&#xff0c;有点类似 vue 中的 computed 计算属性…

若依前后端分离版集成ShardingSphere-补充版代码演示

拉取项目&#xff1a;https://gitee.com/y_project/RuoYi-Vue。前后端分离版本新建数据库&#xff0c;字符集选择utf8mb4。导入mysql文件。 主pom文件中引入依赖 <!-- 分库分表引擎 --><dependency><groupId>org.apache.shardingsphere</groupId><…

Postman接口测试:全局变量/接口关联/加密/解密

&#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 全局变量和环境变量 全局变量&#xff1a;在postman全局生效的变量&#xff0c;全局唯一 环境变量&#xff1a;在特定环境下生效的变量&#xff0c;本环境内唯一 …