股票预测和使用LSTM(长期-短期-记忆)的预测

一、说明

        准确预测股市走势长期以来一直是投资者和交易员难以实现的目标。虽然多年来出现了无数的策略和模型,但有一种方法最近因其能够捕获历史数据中的复杂模式和依赖关系而获得了显着的关注:长短期记忆(LSTM)。利用深度学习的力量,LSTM 提供了一种很有前途的途径,可以深入了解股票市场的不可预测性。在本文中,我们将深入研究基于LSTM的股票市场预测领域,并探讨这种创新方法如何有可能改变投资策略。

成功分析和预测后的绘图预测。

成功分析和预测后的绘图预测。

        LSTM的核心是递归神经网络(RNN)的变体,专门用于解决困扰传统RNN的梯度消失问题。梯度消失问题是指网络中早期层的梯度变得越来越小,阻碍了它们捕获长期依赖性的能力的现象。LSTM 通过整合存储单元、门和精心设计的连接来克服这一限制,使其能够在较长的时间间隔内有选择地保留和传播信息。这种独特的架构使 LSTM 模型能够捕获顺序数据中错综复杂的时间关系,使其特别适合预测时间序列数据,例如股票价格。

二、LSTM记忆网络

        要了解更多回合 LSTM ,请访问 :

了解长短期记忆 (LSTM) 算法

LSTM 算法是帮助机器理解和预测复杂数据的强大工具。了解 LSTM 如何适用于机器学习...

        让我们来看看我们的股票数据分析和预测。

2.1 导入所需库

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM
import math
from sklearn.metrics import mean_squared_error

        在这里,我们导入了熊猫,用于绘图的matplotlib,用于预处理的numpy,sklearn用于预处理,尺度调整和误差计算,以及用于模型构建的张量流。

2.2 我移植数据集

        您可以在以下 GitHub 存储库中找到我使用的数据集。

GitHub - mwitiderrick/stockprice: Stock Price Prediction 教程的数据和笔记本

股票价格预测教程的数据和笔记本 - GitHub - mwitiderrick/stockprice:数据和笔记本...

github.com

df = pd.read_csv('D:/stockprice-master/NSE-TATAGLOBAL.csv')
df.head()

三、数据分析

df2 = df.reset_index()['Close']
plt.plot(df2)

图表显示数据集中的库存流

我们将在收盘价列上进行股票预测。

3.1 数据预处理

scaler = MinMaxScaler()
df2 = scaler.fit_transform(np.array(df2).reshape(-1,1))
df2.shape

(2035, 1)

在这里,我们缩小 (0,1) 之间的值。

3.2 训练-测试拆分

train_size = int(len(df2)*0.65)
test_size = len(df2) - train_size
train_data,test_data = df2[0:train_size,:],df2[train_size:len(df2),:1]

        在这里,我们获取了 65% 的数据用于训练,其余 35% 用于测试。

def create_dataset(dataset, time_step = 1):
    dataX,dataY = [],[]
    for i in range(len(dataset)-time_step-1):
                   a = dataset[i:(i+time_step),0]
                   dataX.append(a)
                   dataY.append(dataset[i + time_step,0])
    return np.array(dataX),np.array(dataY)

        创建一个函数作为 create_dataset(),它根据我们采取的时间步长将数据集分成 2 个。第一个数据集,即;dataX 将值作为其输入,第二个数据集 dataY 将值作为输出。基本上,它从上述数据集创建一个数据集矩阵。

# calling the create dataset function to split the data into 
# input output datasets with time step 100
time_step = 100
X_train,Y_train =  create_dataset(train_data,time_step)
X_test,Y_test =  create_dataset(test_data,time_step)
# checking values
print(X_train.shape)
print(X_train)
print(X_test.shape)
print(Y_test.shape)

(1221, 100)
[[0.62418301 0.62214052 0.62622549 ...0.83455882 0.86213235 0.85273693]
[0.62214052 0.62622549 0.63378268 ...0.86213235 0.85273693 0.87111928]
[0.62622549 0.63378268 0.62234477 ...0.85273693 0.87111928 0.84497549]
...
[0.34517974 0.31781046 0.33047386 ...0.2816585 0.27001634 0.26531863]
[0.31781046 0.33047386 0.32128268 ...0.27001634 0.26531863 0.27389706]
[0.33047386 0.32128268 0.34007353 ...0.26531863 0.27389706 0.25347222]](612, 100)(612,)

四、创建和拟合 LSTM 模型

model = Sequential()
model.add(LSTM(50,return_sequences = True,input_shape = (X_train.shape[1],1)))
model.add(LSTM(50,return_sequences = True))
model.add(LSTM(50))
model.add(Dense(1))
model.compile(loss = 'mean_squared_error',optimizer = 'adam')

        在这里,我们添加了 4 层 LSTM,其中 1 层作为输入层,2 层作为隐藏层,1 层作为输出层作为 Dense。 在前 3 层中,我们取了 50 个神经元和 个用于输出。

        我们使用亚当优化器编译模型,该优化器将使用均方误差计算损失。

model.summary()

model.fit(X_train,Y_train,validation_data = (X_test,Y_test),epochs = 100,batch_size = 64,verbose = 1)

在这里,该模型已经训练了 100 个 epoch,每个 epoch 的批大小为 64。

五、预测和检查性能矩阵

train_predict = model.predict(X_train)
test_predict = model. Predict(X_test)
# transform to original form
train_predict = scaler.inverse_transform(train_predict)
test_predict = scaler.inverse_transform(test_predict)

        当我们在 0 和 1 中缩小数据集的值时,我们需要再次反转变换,以便在图上获得准确的预测值,因此,这里我们反转两个预测的变换。

        现在是计算rmse性能矩阵的时候了。

print(math.sqrt(mean_squared_error(Y_train,train_predict)))
print(math.sqrt(mean_squared_error(Y_test,test_predict)))

166.74853517776896
116.51567464682968

在这里,计算的两个值都非常接近,即;差值小于 50,表示模型精度良好

六 图形绘制

look_back = 100
trainPredictPlot = np.empty_like(df2)
trainPredictPlot[:,:] = np.nan
trainPredictPlot[look_back : len(train_predict)+look_back,:] = train_predict

        回看变量采用当前值后面的值数,即;记住与 LSTM 相同的前 100 个值。在这里,每次绘制图形时,trainPredictionPlot 都会在它们后面取 100 个值并绘制它。绘图从前 100 个值开始,一直到火车预测的长度 + 回溯,即 100。

testPredictPlot = np.empty_like(df2)
testPredictPlot[:,:] = np.nan
testPredictPlot[len(train_predict)+(look_back)*2 + 1 : len(df2) - 1,:] = test_predict

        TestPredictionPlot 也是如此,但这次它采用Train_predict旁边的值。这里回顾将从火车预测结束的地方开始。

plt.plot(scaler.inverse_transform(df2))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()

        在这里,橙色是TrainPredictionPlot,绿色是TestPredictionPplot,蓝色是实际数据集。因此,我们可以看到我们的模型很好地预测了股票价格。

        该模型仅用于学习目的,不建议用于任何未来的投资。普拉吉瓦尔·乔汉

七、结论

        总之,利用长期短期记忆(LSTM)进行股票市场预测代表了财务预测领域的重大飞跃。这种基于深度学习力量的创新方法展示了其捕获历史股票市场数据中复杂模式和依赖关系的潜力。通过将LSTM模型纳入投资策略,交易者和投资者可以在驾驭股票市场的不可预测性中获得宝贵的优势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/93811.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[MyBatis系列⑥]注解开发

🍃作者简介:准大三本科网络工程专业在读,持续学习Java,努力输出优质文章 ⭐MyBatis系列①:增删改查 ⭐MyBatis系列②:两种Dao开发方式 ⭐MyBatis系列③:动态SQL ⭐MyBatis系列④:核心…

Postman API测试之道:不止于点击,更在于策略

引言:API测试的重要性 在当今的软件开发中,API已经成为了一个不可或缺的部分。它们是软件组件之间交互的桥梁,确保数据的流动和功能的实现。因此,对API的测试显得尤为重要,它不仅关乎功能的正确性,还涉及到…

android framework之Applicataion启动流程分析

Application启动流程分析 启动方式一:通过Launcher启动app 启动方式二:在某一个app里启动第二个app的Activity. 以上两种方式均可触发app进程的启动。但无论哪种方式,最终通过通过调用AMS的startActivity()来启动application的。 根据上图…

论文解读 | ScanNet:室内场景的丰富注释3D重建

原创 | 文 BFT机器人 大型的、有标记的数据集的可用性是为了利用做有监督的深度学习方法的一个关键要求。但是在RGB-D场景理解的背景下,可用的数据非常少,通常是当前的数据集覆盖了一小范围的场景视图,并且具有有限的语义注释。 为了解决这个问题&#…

数据仓库一分钟

简介 数据仓库(Data Warehouse)简称DW或DWH,是数据库的一种概念上的升级,可以说是为满足新需求设计的一种新数据库,而这个数据库是需容纳更多的数据,更加庞大的数据集,从逻辑上讲数据仓库和数据…

Midjourney API 的对接和使用

“ 阅读本文大概需要 4 分钟。 ” 在人工智能绘图领域,想必大家听说过 Midjourney 的大名吧。 Midjourney 以其出色的绘图能力在业界独树一帜。无需过多复杂的操作,只要简单输入绘图指令,这个神奇的工具就能在瞬间为我们呈现出对应的图像。无…

Git企业开发控制理论和实操-从入门到深入(七)|企业级开发模型

前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总 然后就是博主最近最花时间的一个专栏…

8.7.tensorRT高级(3)封装系列-调试方法、思想讨论

目录 前言1. 模型调试技巧总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程,之前有看过一遍,但是没有做笔记,很多东西也忘了。这次重新撸一遍,顺便记记笔记。 本次课程学习 tensorRT 高级-调试方法、思想讨论 课程大纲可看…

知虾shopee数据分析工具:shopee出单的商机利器

当今数字化时代,数据已经成为商业成功的关键要素之一。而Shopee作为东南亚最大的电商平台之一,其强大的数据分析工具正为商家提供了宝贵的市场洞察和决策支持。本文将深入探讨Shopee数据分析工具如何帮助商家抓住商机并取得成功。 洞察消费者需求&#x…

P21~22 第六章 储能元件——电容存储电场能,电感存储磁场能

1、电容元件 a定义 b线性时不变电容元件 c电容的电压与电流关系 i有限则u有限 注意理解面积 d电容的功率和储能 e例一 跃变就是指物体的物理量从有限值变为无限值的过程。 分析上图例题:对于电源波形要吃负无穷到正无穷去刻画。即时间轴要铺满。 有有图控制电…

sql:SQL优化知识点记录(四)

(1)explain之ref介绍 type下的ref是非唯一性索引扫描具体的一个值 ref属性 例如:ti表先加载,const是常量 t1.other_column是个t1表常量 test.t1.ID:test库t1表的ID字段 t1表引用了shared库的t2表的col1字段&#x…

python可视化matplotlib——绘制正弦和余弦

这是一个使用matplotlib库绘制正弦和余弦函数曲线的代码示例。代码中导入了需要的库,并设置了x轴和y轴的标签字体为华文楷体。然后,使用numpy生成一组x轴上的值t,并使用正弦函数生成对应的y轴值s,再使用余弦函数生成对应的y轴值z。…

Java学数据结构(1)——抽象数据类型ADT 表List、栈Stack和队列Qeue

目录 引出抽象数据类型(abstract data type,ADT)表ListArrayList,Vector, LinkedListArrayList手动实现与分析Vector的分析(线程安全)LinkedList 的手动实现与分析 栈stack—后进先出java中stack源码分析栈的应用:检查…

创邻科技张晨:图数据库,激活数据要素的新基建

“数据经济时代,数据要素产业链的各细分领域均蕴含机遇,图技术作为网络协同和数据智能的底层发动机,将深度掘金数字中国价值潜能”。 8月22日,在2023中国(南京)国际软件产品和信息服务交易博览会的信息技术…

Day48|leetcode 198.打家劫舍、213.打家劫舍II、打家劫舍|||

leetcode 198.打家劫舍 题目链接:198. 打家劫舍 - 力扣(LeetCode) 视频链接:动态规划,偷不偷这个房间呢?| LeetCode:198.打家劫舍_哔哩哔哩_bilibili 题目概述 你是一个专业的小偷,…

【Android】TextView适配文本大小并保证中英文内容均在指定的UI 组件内部

问题 现在有一个需求&#xff0c;在中文环境下textView没有超过底层的组件限制&#xff0c;但是一切换到英文环境就超出了&#xff0c;这个如何解决呢&#xff1f;有啥例子吗&#xff1f; 就像这样子的。 解决 全部代码如下&#xff1a; <?xml version"1.0"…

汽车电子笔记之:AUTOSAR方法论及基础概念

目录 1、AUTOSAR方法论 2、AUTOSAR的BSW 2.1、MCAL 2.2、ECU抽象层 2.3、服务层 2.4、复杂驱动 3、AUTOSAR的RTE 4、AUTOSAR的应用层 4.1、SWC 4.2、AUTOSAR的通信 4.3、AUTOSAR软件接口 1、AUTOSAR方法论 AUTOSAR为汽车电子软件系统开发过程定义了一套通用的技术方法…

腾讯云coding平台平台inda目录遍历漏洞复现

前言 其实就是一个python的库可以遍历到&#xff0c;并不能遍历到别的路径下&#xff0c;后续可利用性不大&#xff0c;并且目前这个平台私有部署量不多&#xff0c;大多都是用腾讯云在线部署的。 CODING DevOps 是面向软件研发团队的一站式研发协作管理平台&#xff0c;提供…

基于Ubuntu坏境下的Suricata坏境搭建

目录 Suricata环境安装 第一步、在 Ubuntu 端点安装 Suricata 1、加入Suricata源 2、更新安装包 3、下载SuricataSuricata 第二步、下载并提取新兴威胁 Suricata 规则集 1、在tmp文件夹下载 Suricata 规则集 如果发现未安装curl&#xff0c;使用apt安装即可&#xff1a;…

QT 消息对话框按钮显示

前言 搞QT嘛&#xff0c;大多数都是军工。都要国产化&#xff0c;而且消息对话框的按钮的英文也不是很得劲&#xff0c;所以需要汉化。使用静态函数的按钮就是显示英文&#xff0c;汉化的代码如下。 void Widget::on_pushButton_clicked() {QMessageBox box(QMessageBox::Inf…