【Spark】Spark Join类型及Join实现方式

如果觉得这篇文章对您有帮助,别忘了点赞、分享或关注哦!您的一点小小支持,不仅能帮助更多人找到有价值的内容,还能鼓励我持续分享更多精彩的技术文章。感谢您的支持,让我们一起在技术的世界中不断进步!

Spark Join类型

在这里插入图片描述

1. Inner Join (内连接)
  • 示例
    val result = df1.join(df2, df1("id") === df2("id"), "inner")
    
  • 执行逻辑:只返回那些在两个表中都有匹配的行。
2. Left Join (左外连接)
  • 示例
    val result = df1.join(df2, df1("id") === df2("id"), "left")
    
  • 执行逻辑:返回左表的所有记录,并且右表的匹配行,若右表没有匹配行则返回 null
3. Right Join (右外连接)
  • 示例
    val result = df1.join(df2, df1("id") === df2("id"), "right")
    
  • 执行逻辑:返回右表的所有记录,并且左表的匹配行,若左表没有匹配行则返回 null
4. Full Join (全外连接)
  • 示例
    val result = df1.join(df2, df1("id") === df2("id"), "outer")
    
  • 执行逻辑:返回左表和右表的所有记录,若某一方没有匹配,另一方则填充 null
5. Left Semi Join (左半连接)
  • 示例
    val result = df1.join(df2, df1("id") === df2("id"), "left_semi")
    
  • 执行逻辑:返回左表中与右表匹配的行,只返回左表数据,不返回右表。
6. Left Anti Join (左反连接)
  • 示例
    val result = df1.join(df2, df1("id") === df2("id"), "left_anti")
    
  • 执行逻辑:返回左表中不与右表匹配的行。
7. Cross Join (笛卡尔积连接)
  • 示例
    val result = df1.crossJoin(df2)
    
  • 执行逻辑:返回两表的笛卡尔积,左表的每一行与右表的每一行组合。

Spark Join实现方式

在 Spark 中,Join 操作有多种实现方式,每种方式的实现原理、适用场景和执行性能有所不同。接下来我们详细讨论以下几种常见的
Join 实现方式:

在这里插入图片描述

1. CPJ(Cartesion Product Join)笛卡尔积连接

工作原理:

  • 笛卡尔积连接是最基础的连接方式,它将两个数据集的每一条记录与另一个数据集的每一条记录进行配对,从而生成一个新的结果集。这个操作是非常低效的,因为它会产生
    N * M 条记录(NM 分别是两个数据集的行数)。
  • 这种方式不需要连接条件,因此通常不是我们期望的连接类型。

执行性能:

  • 效率低:当两个数据集的大小很大时,计算量将急剧增加。通常,笛卡尔积连接仅在明确需要时使用(例如,计算所有可能的配对)。

Spark 选择笛卡尔积的情况:

  • 笛卡尔积连接在 Spark 中通常是显式调用 crossJoin() 时使用。
2. SMJ(Shuffle Sort Merge Join)排序归并连接

工作原理:

  • 排序归并连接首先对两个数据集按照连接键进行排序,然后使用 merge 操作将排序后的数据集进行合并。数据集会被按连接键进行 shuffle,然后在每个分区内执行归并操作。
  • 这种方法非常适合处理大规模的分布式数据,尤其是当两个数据集都很大并且有良好的分区时。

执行性能:

  • 效率较高:适合大数据量的连接,尤其当连接键有排序特性时。
  • 由于需要对数据进行排序和 shuffle,这会增加网络和磁盘的 I/O 成本。

Spark 选择 SMJ 的情况:

  • 当数据集较大并且 Spark 能够进行有效的 shuffle 操作时,Spark 会选择 SMJ
  • 如果连接的表已经分区或有排序字段,则 Spark 会优先选择该方式。
3. SHJ(Shuffle Hash Join)哈希连接

工作原理:

  • 哈希连接(SHJ) 是一种基于哈希表的连接方式。其基本思想是将一个表(通常是较小的表)哈希到内存中,然后通过哈希表查找另一个表的匹配记录。该方法特别适合处理大规模的数据集,尤其是当连接的两个数据集都比较大时,或者当连接键不具有顺序或排序特性时。
  • 执行步骤
    1. 分区阶段(Shuffle):首先,Spark 会将两个数据集根据连接键进行 shuffle(重分区),确保具有相同连接键的记录被发送到同一个节点。此时,数据会按照连接键进行重分区。
    2. 构建哈希表:选择较小的表(通常是内表),在每个节点上对该表进行哈希,构建哈希表。哈希表存储连接键及其对应的记录。
    3. 匹配查找:然后,在同一个节点上扫描较大的表(外表),对于每一条记录,使用相同的连接键查找哈希表中的匹配项。如果匹配,则生成结果。

执行性能:

  • 高效:相比传统的嵌套循环连接(NLJ),哈希连接通常在处理大数据集时更为高效,特别是当连接条件是等值连接时。

Spark 选择 SHJ 的情况:

  • 外表大小至少是内表的3倍且内表的数据分片平均大小要小于广播变量阈值,Spark 会选择 Shuffle Hash Join
4. BNLJ(Broadcast Nested Loop Join)广播嵌套循环连接

工作原理:

  • 广播嵌套循环连接是嵌套循环连接的一种优化形式,针对连接的一个表较小的情况。它首先将较小的表(通常是内表)广播到所有执行节点,然后对大表(通常是外表)进行扫描。在每个节点上,将小表加载到内存中,并在每个分区上与外表进行连接。

执行性能:

  • 高效:相比于传统的嵌套循环连接(Nested Loop Join),广播嵌套循环连接的效率较高,因为它通过将小表广播到每个节点,避免了全局的 shuffle 操作,减少了数据传输的延迟。
  • 适合当一个表非常小(例如,broadcast() 小表时)时,执行性能特别好。

Spark 选择 BNLJ 的情况:

  • Spark 会自动选择 Broadcast Nested Loop Join,当数据集中的一个表较小(可以放入内存)时,Spark 会选择该表进行广播,从而提高连接操作的性能。通常,Spark
    会根据表的大小和内存限制来决定是否使用广播 join
5. BHJ(Broadcast Hash Join)广播哈希连接

工作原理:

  • 广播哈希连接通过将一个小表广播到所有执行节点,从而避免了全局的 shuffle 操作。大的数据集会被分配到多个节点,而小的数据集会被广播到每个节点。
  • 这种方式非常高效,适用于连接一个大表和一个小表的情况。

执行性能:

  • 效率非常高:适用于大表和小表连接,避免了大规模的 shuffle 操作。
  • 适合当一个表非常小(例如,broadcast() 小表时)时,执行性能特别好。

Spark 选择 BHJ 的情况:

  • 如果其中一个表很小,Spark 会选择 BHJ,因为将小表广播到所有节点可以大大减少 shuffle 的开销。
Spark 如何选择 Join 策略?
1. 等值 Join

在等值数据关联中,Spark 会尝试按照以下顺序选择最优的连接策略:

  1. BHJ(Broadcast Hash Join)
  2. SMJ(Shuffle Sort Merge Join)
  3. SHJ(Shuffle Hash Join)

适用场景:

  • BHJ(Broadcast Hash Join): 连接类型不能是全连接(Full Outer Join),基表需要足够小,能够放入内存并通过广播发送到所有节点。
  • SMJ(Shuffle Sort Merge Join)与 SHJ(Shuffle Hash Join):支持所有连接类型,如Full Outer Join,Anti join

为什么SHJ比SMJ执行效率高,排名却不如SMJ靠前

  • 相比 SHJ,Spark优先选择SMJ的原因在于,SMJ的实现方式更加稳定,更不容易OOM
  • 在 Spark 中,SHJ(Shuffle Hash Join) 策略要想被选中,需要满足以下两个先决条件:
    • a. 外表大小至少是内表的 3 倍:只有当内外表的尺寸悬殊到一定程度时,SHJ 的性能优势才会明显超过 SMJ。
    • b. 内表的数据分片平均大小要小于广播变量阈值:内表的数据分片必须足够小,以便能够通过广播传递到各个节点,而不引起内存溢出或性能问题。
  • 相比 SHJ,SMJ没有这么多的附加条件,无论是单表排序,还是两表做归并关联,都可以借助磁盘来完成。内存中放不下的数据,可以临时溢出到磁盘
2. 非等值 Join
  • 在非等值数据关联中,Spark可选的Join策略只有BNLJ(Broadcast Nested Loop Join)和CPJ(Cartesion Product Join),BNLJ适合内表满足广播情况,否则只能用CPJ兜底

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/936270.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

从YOLOv5到训练实战:易用性和扩展性的加强

文章目录 前言一、模型介绍二、YOLOv5网络结构1.Input(输入端):智能预处理与优化策略2.Backbone(骨干网络):高效特征提取3.NECK(颈部):特征增强与多尺度融合4.Prediction…

Java爬虫设计:淘宝商品详情接口数据获取

1. 概述 淘宝商品详情接口(如Taobao.item_get)允许开发者通过编程方式,以JSON格式实时获取淘宝商品的详细信息,包括商品标题、价格、销量等。本文档将介绍如何设计一个Java爬虫来获取这些数据。 2. 准备工作 在开始之前&#x…

AIGC 013-CoT用思维链挖掘自回归语言模型的潜在能力

AIGC 013-CoT用思维链挖掘自回归语言模型的潜在能力 文章目录 0 论文工作1 论文方法2 实验结果 0 论文工作 纯自回归式语言模型,本来并不具备优秀推理能力,特别是在数学问题的推理。但是现在的生成模型是能实现一些数学的推理的。研究者认为当模型足够大…

上传文件时获取音视频文件时长和文本文件字数

获取音视频文件时长和文本文件字数 一、获取音视频文件时长二、计算文本文件字数 最近有个需求,要求上传文件时获取音视频文件时长和文本文件字数🐶。 发现这样的冷门资料不多,特做个记录。本文忽略文件上传功能,只封装核心的工具…

ue5.2 数字孪生(11)——Web_UI插件网页通信

Web_UI插件下载安装: https://github.com/tracerinteractive/UnrealEngine/releases 下载对应Ue版本的Web_UI插件以及相关的Json、Http库; 将插件安装到引擎根目录 Ue链接Web: 在项目中启用插件并重启项目; 创建基于Web的用户…

postman可以通的请求,前端通不了(前端添加Content-type,后端收不到请求)

接口完成之后,自己使用postman测试了一下,没有问题; 可是在和小组前端调试接口的时候,他却说访问不了; 信息如下:(我自己写的一个打印请求信息的拦截器) 发现报错信息是: Content type ‘application/x-www-form-urlencoded;charset=UTF-8’ not supported 也就是说…

EFAK kafka可视化管理工具部署使用

简介:EFAK是开源的可视化和管理软件。它允许您查询、可视化、提醒和探索您的指标,无论它们存储在何处。简单来说,它为您提供了将 Kafka 集群数据转换为漂亮的图形和可视化效果的工具。 环境:①操作系统:CentOS7.6&…

MySQL生产环境备份脚本

全量备份脚本,其中BakDir,ZlbakDir,LogFile需要自己创建 #!/bin/bash export LANGen_US.UTF-8# 指定备份目录 BakDir/root/beifen/data/mysqlbak/data/allbak # 指定增量备份目录 ZlbakDir/root/beifen/data/mysqlbak/data/zlbak # 备份日志…

快速搭建express

一、 安装express-generator npm i -g express-generator二、创建项目 express -e 项目名三、安装依赖 npm install四、运行项目 cd 项目名npm start 五、打开网页http://localhost:3000/ 六、实时更新 1、安装nodemon npm i -g nodemon2、修改package.json 改成nodemon …

网络编程 01:计算机网络概述,网络的作用,网络通信的要素,以及网络通信协议与分层模型

一、概述 记录时间 [2024-12-13] 本文讲述网络编程相关知识,例如,什么是计算机网络,网络有什么作用,网络通信的要素是什么,以及网络通信协议与分层模型。 网页编程 / 网络编程区别: 网页编程:J…

亚信安全DeepSecurity完成与超云超融合软件兼容性互认

近日,亚信安全与超云数字技术集团有限公司(以下简称“超云”)联合宣布,亚信安全成功完成与超云超融合软件的产品兼容性互认证。经严格测试,亚信安全云主机安全DeepSecurity与超云FS5000增强型融合系统(简称…

【工业机器视觉】基于深度学习的水表盘读数识别(3-数据标注与转换)

【工业机器视觉】基于深度学习的仪表盘识读(2)-CSDN博客 数据标注 标注扩展 Labelme 和 LabelImg 都是用于创建机器学习和计算机视觉项目所需标注数据的工具。它们都允许用户通过图形界面手动标注图像,但各自有其特点和适用场景。 Labelme…

【硬件测试】基于FPGA的4ASK调制解调通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR

目录 1.算法仿真效果 2.算法涉及理论知识概要 3.Verilog核心程序 4.开发板使用说明和如何移植不同的开发板 5.完整算法代码文件获得 1.算法仿真效果 本文是之前写的文章: 《基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR》 的…

ubuntu20.04复现 Leg-KILO

这里写目录标题 opencv版本问题下载3.2.0源代码进入解压后的目录创建构建目录运行 CMake 配置 配置时指定一个独立的安装目录,例如 /opt/opencv-3.2:出错: 使用多线程编译错误1: stdlib.h: 没有那个文件或目录错误2:er…

kubeadm部署1.20集群版

部署说明 步骤1~4 master和node都需执行步骤 5.1 三台master都执行,步骤 5.2 随便一台机器执行步骤5.3根据需要选择部署etcd;堆叠etcd更简单部署更快,外部etcd部署麻烦方便管理;步骤5.4 根据选择部署的etcd方式选择k8…

【电力负荷预测实例】采用新英格兰2024年最新电力负荷数据的XGBoost电力负荷预测模型

与小编上篇文章介绍的基于BPNN神经网络的电力负荷预测相比较,两种模型的负荷预测方法各有优势,神经网络能够自动提取特征并处理非线性关系,而XGBoost则具有预测精度高、运行速率快和可解释性强的特点。在实际应用中,可以根据具体需…

6_Sass 选择器函数 --[CSS预处理]

Sass 提供了一系列的选择器函数,用于操作和组合CSS选择器。这些函数可以帮助你更灵活地创建样式规则,并且可以减少重复代码。以下是几个常用的选择器函数及其用法: 1. selector-append($selector1, $selector2...) selector-append($select…

List【Redis对象篇】

🏆 作者简介:席万里 ⚡ 个人网站: 文章目录 LIst1.简介2.使用场景3.常用操作1.写操作2.读操作 4.底层实现5.压缩列表的优化1.ZIPLIST结构2.ziplist更新数据3.LISTPACK优化 6.总结(重点) LIst 1.简介 Redis List是一组…

心情追忆- SEO优化提升用户发现率

之前,我独自一人开发了一个名为“心情追忆”的小程序,旨在帮助用户记录日常的心情变化及重要时刻。我从项目的构思、设计、前端(小程序)开发、后端搭建到最终部署。经过一个月的努力,通过群聊分享等方式,用…

.NET 技术系列 | 通过CreatePipe函数创建管道

01阅读须知 此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等(包括但不限于)进行检测或维护参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的直接或间接后果和损失&#xf…