VLDB 2024于2024年8月26号-8月30号在中国广州举行。
本文总结了VLDB 2024有关时空数据(time series data)的相关论文,主要包含如有疏漏,欢迎大家补充。
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅
时空数据Topic:交通预测,插补,轨迹相似度检索,轨迹恢复,轨迹插补,路径规划,最短路查询等
- BigST: Linear Complexity Spatio-Temporal Graph Neural Network for Traffic Forecasting on Large-Scale Road Networks
- Sparcle: Boosting the Accuracy of Data Cleaning Systems through Spatial Awareness
- High-Performance Spatial Data Analytics: Systematic R&D for Scale-Out and Scale-Up Solutions from the Past to Now 3
- TERI: An Effective Framework for Trajectory Recovery with Irregular Time Intervals
- KAMEL: A Scalable BERT-based System for Trajectory Imputation
- Trajectory Similarity Measurement: An Efficiency Perspective
Nuhuo: An Effective Estimation Model for Traffic Speed- Histogram Imputation on A Road Network
- Real-time Insertion Operator for Shared Mobility on Time-Dependent Road Networks
- Efficient Stochastic Routing in Path-Centric Uncertain Road Networks
- PCSP: Efficiently Answering Label-Constrained Shortest Path Queries in Road Networks
- [Demo] Pyneapple-G: Scalable Spatial Grouping Queries
BigST: Linear Complexity Spatio-Temporal Graph Neural Network for Traffic Forecasting on Large-Scale Road Networks
链接:https://www.vldb.org/pvldb/vol17/p1081-han.pdf
代码:https://github.com/usail-hkust/BigST
作者:Jindong Han, Weijia Zhang, Hao Liu, Tao Tao, Naiqiang Tan, Hui Xiong
关键词:可扩展的交通预测
Sparcle: Boosting the Accuracy of Data Cleaning Systems through Spatial Awareness
链接:https://www.vldb.org/pvldb/vol17/p2349-mokbel.pdf
代码:https://github.com/yhuang-db/holoclean-sparcle
作者:Yuchuan Huang, Mohamed Mokbel
关键词:数据清理系统, 空间感知
High-Performance Spatial Data Analytics: Systematic R&D for Scale-Out and Scale-Up Solutions from the Past to Now
链接:https://www.vldb.org/pvldb/vol17/p4507-wang.pdf
代码:https://github.com/harsha2010/magellan
作者:Fusheng Wang, Rubao Lee, Dejun Teng, Xiaodong Zhang, Joel Saltz
关键词:Hadoop-GIS, spatial data analysis, hardware acceleration
TERI: An Effective Framework for Trajectory Recovery with Irregular Time Intervals
链接:https://www.vldb.org/pvldb/vol17/p414-chen.pdf
代码:https://github.com/yileccc/TERI
作者:Yile Chen, Gao Cong, Cuauhtemoc Anda
关键词:轨迹恢复,不规则采样
KAMEL: A Scalable BERT-based System for Trajectory Imputation
链接:https://www.vldb.org/pvldb/vol17/p525-musleh.pdf
代码:https://github.com/meshalawy/KAMEL
作者:Mashaal Musleh, Mohamed F. Mokbel
关键词:轨迹插补, BERT,可扩展性
Trajectory Similarity Measurement: An Efficiency Perspective
链接:https://www.vldb.org/pvldb/vol17/p2293-qi.pdf
代码:https://github.com/changyanchuan/TrajSimiMeasures
作者:Yanchuan Chang, Egemen Tanin, Gao Cong, Christian S. Jensen, Jianzhong Qi
关键词:轨迹相似度计算,效率评估
Nuhuo: An Effective Estimation Model for Traffic Speed Histogram Imputation on A Road Network
链接:https://www.vldb.org/pvldb/vol17/p1605-yuan.pdf
代码:https://github.com/yuanhaitao/Nuhuo.git
作者:Haitao Yuan, Gao Cong, Guoliang Li
关键词:交通速度直方图, 插补
Real-time Insertion Operator for Shared Mobility on Time-Dependent Road Networks
链接:https://www.vldb.org/pvldb/vol17/p1669-zeng.pdf
代码:https://github.com/gzyhkust/Insertion-Operator
作者:Zengyang Gong, Yuxiang Zeng, Lei Chen
关键词:real-time insertion operator, 共享出行, 时间依赖的路网
Efficient Stochastic Routing in Path-Centric Uncertain Road Networks
链接:https://www.vldb.org/pvldb/vol17/p2893-xu.pdf
代码:https://github.com/decisionintelligence/Route-sota
作者:Chenjuan Guo, Ronghui Xu, Bin Yang, Yuan Ye, Tung Kieu, Yan Zhao, Christian S. Jensen
关键词:路径规划,随即路由, 启发式
PCSP: Efficiently Answering Label-Constrained Shortest Path Queries in Road Networks
链接:https://www.vldb.org/pvldb/vol17/p3082-wang.pdf
代码:https://github.com/lbwang95/PCSP
作者:SLibin Wang, Raymond Chi-Wing Wong
关键词:Shortest Path Queries
[Demo] Pyneapple-G: Scalable Spatial Grouping Queries
链接:https://www.vldb.org/pvldb/vol17/p4469-abdelhafeez.pdf
作者:Laila Abdelhafeez, Andres Calderon, Amr Magdy, Vassilis J. Tsotras
关键词:空间分组查询
相关链接
VLDB 2024 Accepted Paper:https://vldb.org/pvldb/volumes/17/
J. Tsotras
关键词:空间分组查询
[外链图片转存中…(img-ip6VfUNf-1733847017679)]
相关链接
VLDB 2024 Accepted Paper:https://vldb.org/pvldb/volumes/17/
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅