题目描述:
给你二叉搜索树的根节点 root
,同时给定最小边界low
和最大边界 high
。通过修剪二叉搜索树,使得所有节点的值在[low, high]
中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。
所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。
示例 1:
输入:root = [1,0,2], low = 1, high = 2 输出:[1,null,2]
示例 2:
输入:root = [3,0,4,null,2,null,null,1], low = 1, high = 3 输出:[3,2,null,1]
提示:
- 树中节点数在范围
[1, 104]
内 0 <= Node.val <= 104
- 树中每个节点的值都是 唯一 的
- 题目数据保证输入是一棵有效的二叉搜索树
0 <= low <= high <= 104
我的作答:
和【代码随想录】刷题记录(65)-删除二叉搜索树中的结点 类似,先处理当前结点,再递归左右子树;
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):
def trimBST(self, root, low, high):
"""
:type root: Optional[TreeNode]
:type low: int
:type high: int
:rtype: Optional[TreeNode]
"""
if not root:
return None
if root.val<low: #如果结点值比low小说明要往大(右)搜索
right = self.trimBST(root.right, low, high)
return right
if root.val>high: #结点值比high大说明要往小(左)搜索
left = self.trimBST(root.left, low, high)
return left
root.left = self.trimBST(root.left, low, high) #处理左子树
root.right = self.trimBST(root.right, low, high) #处理右子树
return root
每天都在害怕自己找不到工作的恐慌中,项目也不会呜呜。。
参考代码:迭代法
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):
def trimBST(self, root, L, R):
if not root:
return None
# 处理头结点,让root移动到[L, R] 范围内,注意是左闭右闭
while root and (root.val < L or root.val > R):
if root.val < L:
root = root.right # 小于L往右走
else:
root = root.left # 大于R往左走
cur = root
# 此时root已经在[L, R] 范围内,处理左孩子元素小于L的情况
while cur:
while cur.left and cur.left.val < L:
cur.left = cur.left.right
cur = cur.left
cur = root
# 此时root已经在[L, R] 范围内,处理右孩子大于R的情况
while cur:
while cur.right and cur.right.val > R:
cur.right = cur.right.left
cur = cur.right
return root