推荐学习笔记:矩阵补充和矩阵分解

参考:

召回

fun-rec/docs/ch02/ch2.1/ch2.1.1/mf.md at master · datawhalechina/fun-rec · GitHub

业务

隐语义模型与矩阵分解

协同过滤算法的特点:

  • 协同过滤算法的特点就是完全没有利用到物品本身或者是用户自身的属性, 仅仅利用了用户与物品的交互信息就可以实现推荐,是一个可解释性很强, 非常直观的模型。
  • 但是也存在一些问题,处理稀疏矩阵的能力比较弱。

为了使得协同过滤更好处理稀疏矩阵问题, 增强泛化能力。从协同过滤中衍生出矩阵分解模型(Matrix Factorization, MF)或者叫隐语义模型:

  • 在协同过滤共现矩阵的基础上, 使用更稠密的隐向量表示用户和物品。
  • 通过挖掘用户和物品的隐含兴趣和隐含特征, 在一定程度上弥补协同过滤模型处理稀疏矩阵能力不足的问题。

近似最近邻查找

  • 支持最近邻查找的系统
  • 系统:Milvus、Faiss、HnswLib、等等
    • 快速最近邻查找的算法已经被集成到这些系统中
  • 衡量最近邻的标准:
    • 欧式距离最小(L2 距离)
    • 向量内积最大(内积相似度)
      • 矩阵补充用的就是内积相似度
    • 向量夹角余弦最大(cosine 相似度)
      • 最常用
      • 对于不支持的系统:把所有向量作归一化(让它们的二范数等于 1),此时内积就等于余弦相似度

音乐评分实例

假设每个用户都有自己的听歌偏好, 比如用户 A 喜欢带有小清新的, 吉他伴奏的, 王菲的歌曲,如果一首歌正好是王菲唱的, 并且是吉他伴奏的小清新, 那么就可以将这首歌推荐给这个用户。 也就是说是小清新, 吉他伴奏, 王菲这些元素连接起了用户和歌曲。

当然每个用户对不同的元素偏好不同, 每首歌包含的元素也不一样, 所以我们就希望找到下面的两个矩阵:

  1. 潜在因子—— 用户矩阵Q 这个矩阵表示不同用户对于不同元素的偏好程度, 1代表很喜欢, 0代表不喜欢, 比如下面这样:

在这里插入图片描述

2. 潜在因子——音乐矩阵P 表示每种音乐含有各种元素的成分, 比如下表中, 音乐A是一个偏小清新的音乐, 含有小清新的Latent Factor的成分是0.9, 重口味的成分是0.1, 优雅成分0.2...

在这里插入图片描述

**计算张三对音乐A的喜爱程度**

利用上面的这两个矩阵,将对应向量进行内积计算,我们就能得出张三对音乐A的喜欢程度:

在这里插入图片描述

  • 张三对小清新的偏好 * 音乐A含有小清新的成分 + 张三对重口味的偏好 * 音乐A含有重口味的成分 + 张三对优雅的偏好 * 音乐A含有优雅的成分...

  • 根据隐向量其实就可以得到张三对音乐A的打分,使用内积相似度

    0.6∗0.9+0.8∗0.1+0.1∗0.2+0.1∗0.4+0.7∗0=0.680.6∗0.9+0.8∗0.1+0.1∗0.2+0.1∗0.4+0.7∗0=0.68

计算所有用户对不同音乐的喜爱程度

按照这个计算方式, 每个用户对每首歌其实都可以得到这样的分数, 最后就得到了我们的评分矩阵:

在这里插入图片描述

+ 红色部分表示用户没有打分,可以通过隐向量计算得到的。

小结

  • 上面例子中的小清晰, 重口味, 优雅这些就可以看做是隐含特征, 而通过这个隐含特征就可以把用户的兴趣和音乐的进行一个分类, 其实就是找到了每个用户每个音乐的一个隐向量表达形式(与深度学习中的embedding等价)

  • 这个隐向量就可以反映出用户的兴趣和物品的风格,并能将相似的物品推荐给相似的用户等。 有没有感觉到是把协同过滤算法进行了一种延伸, 把用户的相似性和物品的相似性通过了一个叫做隐向量的方式进行表达

  • 现实中,类似于上述的矩阵 P,QP,Q 一般很难获得。有的只是用户的评分矩阵,如下:

    在这里插入图片描述

    • 这种矩阵非常的稀疏,如果直接基于用户相似性或者物品相似性去填充这个矩阵是不太容易的。
    • 并且很容易出现长尾问题, 而矩阵分解就可以比较容易的解决这个问题。
  • 矩阵分解模型:

    • 基于评分矩阵,将其分解成Q和P两个矩阵乘积的形式,获取用户兴趣和物品的隐向量表达。
    • 然后,基于两个分解矩阵去预测某个用户对某个物品的评分了。
    • 最后,基于预测评分去进行物品推荐。

编程实现

import random
import math


class BiasSVD():
    def __init__(self, rating_data, F=5, alpha=0.1, lmbda=0.1, max_iter=100):
        self.F = F          # 这个表示隐向量的维度
        self.P = dict()     # 用户矩阵P  大小是[users_num, F]
        self.Q = dict()     # 物品矩阵Q  大小是[item_nums, F]
        self.bu = dict()    # 用户偏置系数
        self.bi = dict()    # 物品偏置系数
        self.mu = 0         # 全局偏置系数
        self.alpha = alpha  # 学习率
        self.lmbda = lmbda  # 正则项系数
        self.max_iter = max_iter        # 最大迭代次数
        self.rating_data = rating_data  # 评分矩阵

        for user, items in self.rating_data.items():
            # 初始化矩阵P和Q, 随机数需要和1/sqrt(F)成正比
            self.P[user] = [random.random() / math.sqrt(self.F) for x in range(0, F)]
            self.bu[user] = 0
            for item, rating in items.items():
                if item not in self.Q:
                    self.Q[item] = [random.random() / math.sqrt(self.F) for x in range(0, F)]
                    self.bi[item] = 0

    # 采用随机梯度下降的方式训练模型参数
    def train(self):
        cnt, mu_sum = 0, 0
        for user, items in self.rating_data.items():
            for item, rui in items.items():
                mu_sum, cnt = mu_sum + rui, cnt + 1
        self.mu = mu_sum / cnt

        for step in range(self.max_iter):
            # 遍历所有的用户及历史交互物品
            for user, items in self.rating_data.items():
                # 遍历历史交互物品
                for item, rui in items.items():
                    rhat_ui = self.predict(user, item)  # 评分预测
                    e_ui = rui - rhat_ui  				# 评分预测偏差

                    # 参数更新
                    self.bu[user] += self.alpha * (e_ui - self.lmbda * self.bu[user])
                    self.bi[item] += self.alpha * (e_ui - self.lmbda * self.bi[item])
                    for k in range(0, self.F):
                        self.P[user][k] += self.alpha * (e_ui * self.Q[item][k] - self.lmbda * self.P[user][k])
                        self.Q[item][k] += self.alpha * (e_ui * self.P[user][k] - self.lmbda * self.Q[item][k])
            # 逐步降低学习率
            self.alpha *= 0.1


    # 评分预测
    def predict(self, user, item):
        return sum(self.P[user][f] * self.Q[item][f] for f in range(0, self.F)) + self.bu[user] + self.bi[
            item] + self.mu


# 通过字典初始化训练样本,分别表示不同用户(1-5)对不同物品(A-E)的真实评分
def loadData():
    rating_data={1: {'A': 5, 'B': 3, 'C': 4, 'D': 4},
           2: {'A': 3, 'B': 1, 'C': 2, 'D': 3, 'E': 3},
           3: {'A': 4, 'B': 3, 'C': 4, 'D': 3, 'E': 5},
           4: {'A': 3, 'B': 3, 'C': 1, 'D': 5, 'E': 4},
           5: {'A': 1, 'B': 5, 'C': 5, 'D': 2, 'E': 1}
          }
    return rating_data

# 加载数据
rating_data = loadData()
# 建立模型
basicsvd = BiasSVD(rating_data, F=10)
# 参数训练
basicsvd.train()
# 预测用户1对物品E的评分
for item in ['E']:
    print(item, basicsvd.predict(1, item))

# 预测结果:E 3.685084274454321

梯度下降推导

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/928559.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

java引用第三方jar包,打包全流程

前言: 本文是使用maven引入第三方jar包,通过mvn命令打包。 以下为引入第三方jar包,打包进项目jar中的全流程步骤。 1、引入第三方jar包 1、放置路径 一般来说,放到项目(子项目)的resources的lib目录下。 2、pom引入 如图所示…

【webApp之h5端实战】首页评分组件的原生实现

关于评分组件,我们经常在现代前端框架中用到,UI美观效果丰富,使用体验是非常不错的。现在自己动手使用原生js封装下评分组件,可以用在自己的项目中。 组件实现原理 点击的❤左侧包括自己都是高亮的样式,右侧都是灰色的样式,这样就能把组件的状态区分开了。右边再加上辅…

基于Java Springboot旅游攻略APP且微信小程序

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse 微信…

ScratchLLMStepByStep:一步一步构建大语言模型教程

前言 在学习大语言模型的时候,总会遇到各种各样的名词,像自注意力、多头、因果、自回归、掩码、残差连接、归一化等等。这些名词会让学习者听的云里雾里,觉得门槛太高而放弃。 本教程将会带你从零开始,一步一步的去构建每一个组…

[MacOS] [kubernetes] MacOS玩转虚拟化最佳实践

❓ 为什么不在MacOS本机安装呢?因为M系列芯片是Arm架构,与生产环境或者在本地调试时候,安装虚拟镜像和X86不同,造成不必要的切换环境的额外成本,所以在虚拟化的x86调试 步骤 & 详情 一: 安装OrbStack & 并配置…

MySQL的用户管理和密码管理

用户的密码管理 给用户改密码 初始化mysql后设置初始密码 mysqladmin -uroot password wzy666 改变已有密码 mysqladmin -uroot -pwzy666 password wzy999 SQL语句改,前提是已经进入数据库 alter user rootlocalhost identified by 123456; # 利用数据库服务…

SQLite:DDL(数据定义语言)的基本用法

SQLite:DDL(数据定义语言)的基本用法 1 主要内容说明2 相关内容说明2.1 创建表格(create table)2.1.1 SQLite常见的数据类型2.1.1.1 integer(整型)2.1.1.2 text(文本型)2…

STM32--基于STM32的智能家居设计与实现

本文详细介绍基于STM32F103C8T6的智能家居设计与实现,详细设计资料见文末链接 一、功能模块介绍 智能家居系统系统图如下所示,主要包括温湿度传感器、OLED液晶显示,WIFI物联网模块、人体红外预警模块、烟雾传感器模块、蜂鸣器模块 &#…

基于Java Springboot校园导航微信小程序

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse微信开发…

在 uniapp 项目中使用 Iconify 字体图标库

本文示例在 uniapp 项目中对 Iconify 字体图标库的安装和使用(Iconify 字体图标库是一个免费开源的图标库,它拥有超过20万个开源矢量图标。) 注:本文示例使用的是其 vue3 版本 安装 npm install --save-dev iconify/vue 注&am…

WPF+LibVLC开发播放器-LibVLC播放控制

接上一篇&#xff1a; LibVLC在C#中的使用 实现LibVLC播放器播放控制 界面 界面上添加一个Button按钮用于控制播放 <ButtonGrid.Row"1"Width"88"Height"24"Margin"10,0,0,0"HorizontalAlignment"Left"VerticalAlignme…

ffmpeg安装及配置简单教程

这是ffmpeg官方网站&#xff1a;https://ffmpeg.org/ 这是ffmpeg提供了其他版本的网站&#xff1a;Builds - CODEX FFMPEG gyan.dev 这是ffmpeg提供了提前编译好的可执行文件的github托管网站&#xff1a; https://github.com/BtbN/FFmpeg-Builds/releases 一般windows版本…

Qt-界面优化QSS

QSS介绍 先说下CSS&#xff1a; 在⽹⻚前端开发领域中, CSS 是⼀个⾄关重要的部分. 描述了⼀个⽹⻚的 "样式". 从⽽起到对⽹⻚美化的作⽤。 Qt 仿照 CSS 的模式, 引⼊了 QSS, 来对 Qt 中的控件做出样式上的设定 。 CSS的功能很强大&#xff0c;QSS要逊色一些&#…

后端-一对一的数据封装的两种写法对比

方式一特点&#xff1a;上面的普通封装可以删掉&#xff0c;也可以留着。 注意⚠️&#xff1a;下面的特殊封装的property的值是属性.字段。&#xff08;category.id...) column是sql重命名之后的字段&#xff0c;如果没有重命名是数据库中的值。 方式二特点&#xff1a;上面的…

CTF之密码学(密码特征分析)

一.MD5,sha1,HMAC,NTLM 1.MD5&#xff1a;MD5一般由32/16位的数字(0-9)和字母(a-f)组成的字符串 2.sha1&#xff1a;这种加密的密文特征跟MD5差不多&#xff0c;只不过位数是40&#xff08;sha256&#xff1a;64位&#xff1b;sha512:128位&#xff09; 3.HMAC&#xff1a;这…

网络安全框架及模型-PPDR模型

网络安全框架及模型-PPDR模型 概述: 为了有效应对不断变化的网络安全环境,人们意识到需要一种综合性的方法来管理和保护网络安全。因此,PPDR模型应运而生。它将策略、防护、检测和响应四个要素结合起来,提供了一个全面的框架来处理网络安全问题。 工作原理: PPDR模型的…

QT6学习第八天 QFrame 类

QT6学习第八天 QFrame 类族QLabel 标签部件按钮部件QLineEdit 行编辑器部件QAbstractSpinBoxQAbstractSlider 今天来学一学 QFrame 类。 QFrame 类族 QFrame 类是带有边框的部件的基类。它的子类包括常用的标签部件 QLabel、以及 QLCDNumber、QSplitter、QStackedWidget、QToo…

c++预编译头文件

文章目录 c预编译头文件1.使用g编译预编译头文件2.使用visual studio进行预编译头文件2.1visual studio如何设置输出预处理文件&#xff08;.i文件&#xff09;2.2visual studio 如何设置预编译&#xff08;初始创建空项目的情况下&#xff09;2.3 visual studio打开输出编译时…

简单快速的上手python

前言 python是一门可以快速上手的语言&#xff0c;原因是它语法简单&#xff0c;api容易使用自由灵活 当我们需要安装任何的三方库时&#xff0c;只需要执行 pip install XX 之后在代码里面import xxx就可以使用python啦。 并且python的代码自由灵活&#xff0c;使用缩进区…

【NLP高频面题 - LLM架构篇】旋转位置编码RoPE相对正弦位置编码有哪些优势?

【NLP高频面题 - LLM架构篇】旋转位置编码RoPE相对正弦位置编码有哪些优势&#xff1f; 重要性&#xff1a;⭐⭐⭐ &#x1f4af; NLP Github 项目&#xff1a; NLP 项目实践&#xff1a;fasterai/nlp-project-practice 介绍&#xff1a;该仓库围绕着 NLP 任务模型的设计、训练…