AI开发:逻辑回归 - 实战演练- 垃圾邮件的识别(二)

接上一篇AI开发:逻辑回归 - 实战演练- 垃圾邮件的识别(一)

new_email 无论为什么文本,识别结果几乎都是垃圾邮件,因此我们需要对源码的逻辑进行梳理一下:

在代码中,new_email 无论赋值为何内容都被识别为垃圾邮件(spam),很可能是以下原因之一导致的:

1. 模型训练数据偏差

  • 如果训练数据中垃圾邮件的数量占绝大多数,模型可能会倾向于将所有输入都分类为垃圾邮件。这种问题叫 类别不平衡
  • 解决方法:
    • 平衡数据集:增加非垃圾邮件的样本数量或减少垃圾邮件的样本数量。
    • 使用加权损失函数:在模型训练中对少数类赋予更高的权重。
    • 使用过采样(如 SMOTE)或欠采样技术调整数据分布。

2. 决策边界问题

  • 如果模型的决策边界定义不明确(比如分类器的阈值设置过低或过高),可能会导致模型将所有样本错误分类为某一类别。
  • 解决方法:
    • 检查分类器的阈值(例如,对于逻辑回归,默认阈值为 0.5),并调整为更合理的值。
    • 可视化模型的概率分布,分析垃圾邮件和非垃圾邮件的分类结果。

3. 特征处理问题

  • 如果 new_email 的输入特征没有正确提取(例如特征全为零或异常值),分类器可能会默认分类为垃圾邮件。
  • 解决方法:
    • 检查 new_email 的特征提取过程,确保提取后的特征与训练集特征保持一致。
    • 验证输入数据是否经过与训练数据相同的预处理步骤(如分词、TF-IDF 向量化等)。

4. 过拟合问题

  • 如果模型在训练过程中过拟合,它可能会将所有未知输入归类为训练集中出现频率较高的类别。
  • 解决方法:
    • 重新训练模型,使用正则化技术(如 L1 或 L2)。
    • 增加训练数据的多样性,避免模型记住训练集中的特定模式。

5. 代码逻辑问题

  • 检查预测逻辑是否正确,比如是否意外硬编码了返回值。
  • 示例问题:
    if predicted_label == 1:
        return "Spam"
    else:
        return "Spam"  # 错误逻辑,导致所有都被识别为垃圾邮件
    

6. 模型性能问题

  • 如果模型本身性能很差,可能是因为特征不足或算法选择不当,导致分类效果失败。
  • 解决方法:
    • 评估模型性能(如查看混淆矩阵、F1 分数)。
    • 尝试使用更强的分类器(如随机森林、SVM 或深度学习模型)。

对代码的检查建议

  1. 打印输入特征: 打印出 new_email 的特征向量,检查特征是否异常。

  2. 验证模型输出: 检查模型的概率预测输出(如 predict_proba 方法),确认阈值是否设置合理。

  3. 调试代码: 确认是否存在逻辑错误,特别是在预处理和分类阶段。

因此我们调试一个单独的测试单元:

基于之前的代码,结合分析问题的原因,进行修改以确保模型能够正常工作并准确分类新邮件。以下是一些改进:


修改代码的核心点

  1. 处理类别不平衡
    使用 class_weight='balanced' 或对数据进行平衡处理。

  2. 检查输入特征
    确保 new_email 的特征提取与训练数据一致。

  3. 调整决策阈值
    添加概率输出,并允许用户调整分类阈值。

  4. 增加性能调试信息
    输出模型的预测概率和特征向量,方便检查。


修订后的代码测试单元

import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix

# 示例数据
data = {
    'email': [
        "Win a free iPhone", 
        "Your account is locked, click here", 
        "Meeting tomorrow at 10 AM", 
        "How are you doing today?"
    ],
    'label': [1, 1, 0, 0]
}
data_df = pd.DataFrame(data)

# 特征提取
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(data_df['email'])
y = data_df['label']

# 训练测试集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 处理类别不平衡
model = LogisticRegression(class_weight='balanced')  # 添加 class_weight
model.fit(X_train, y_train)

# 测试模型
y_pred = model.predict(X_test)
print("分类报告:\n", classification_report(y_test, y_pred))

# 测试混淆矩阵
print("混淆矩阵:\n", confusion_matrix(y_test, y_pred))

# 新邮件分类
new_email = "Meeting schedule confirmed"  # 替换为任何测试字符串
new_email_features = vectorizer.transform([new_email])
predicted_prob = model.predict_proba(new_email_features)[0]  # 获取概率
predicted_label = (predicted_prob[1] > 0.5).astype(int)  # 自定义阈值,默认 0.5

print(f"预测概率:{predicted_prob}")
print(f"预测结果:{'Spam' if predicted_label == 1 else 'Not Spam'}")

修改内容说明

  1. 类别不平衡处理:

    • LogisticRegression 中增加 class_weight='balanced',让模型在训练时对垃圾邮件和非垃圾邮件赋予相同权重。
  2. 可调阈值:

    • 默认设置阈值为 0.5,但可以修改为更低或更高以优化精度和召回率。
  3. 模型输出可视化:

    • 添加 predict_proba 输出,显示垃圾邮件和非垃圾邮件的概率,便于调试。
  4. 新增输入检查:

    • 确保 new_email 特征提取与训练数据一致。

测试案例

试试将 new_email 替换为以下字符串,观察输出:

  • "Win a free vacation now!"(垃圾邮件)
  • "Lunch meeting tomorrow at noon"(非垃圾邮件)
  • "Click here to reset your password"(垃圾邮件)

如果模型仍然总是输出垃圾邮件,请注意以下的关键点:

  1. 数据集是否过于不平衡。
  2. classification_report 的输出。
  3. predict_proba 的详细概率分布。

这样不断调试,我们可以进一步优化代码。

以下是改进了处理流程、模型平衡和调试信息的展示:


改进内容

  1. 处理类别不平衡

    • 使用 class_weight='balanced' 或直接进行数据采样平衡,避免模型倾向于输出多数类。
    • 打印垃圾邮件和正常邮件的分布以确保平衡性。
  2. 特征优化

    • 增加 TfidfVectorizer 的参数调整,如 max_featuresngram_range,以优化特征表达。
  3. 可调阈值

    • 使用概率预测,支持调整垃圾邮件分类的阈值。
  4. 增加调试信息

    • 输出分类报告和混淆矩阵,用于评估模型性能。
  5. 文件路径和异常处理

    • 添加对文件夹路径检查的提示和文件读取异常的处理。

在第一篇文章基础上改进后的全部代码

import os
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import numpy as np

# 步骤 1:读取文件内容
def read_files(folder_path):
    if not os.path.exists(folder_path):
        raise FileNotFoundError(f"文件夹 {folder_path} 不存在,请检查路径!")
    
    texts = []
    for filename in os.listdir(folder_path):
        file_path = os.path.join(folder_path, filename)
        if os.path.isfile(file_path):
            try:
                with open(file_path, 'r', encoding='utf-8') as file:
                    texts.append(file.read())
            except Exception as e:
                print(f"无法读取文件 {filename}:{e}")
    return texts

# 假设 A 文件夹为垃圾邮件文件夹,B 文件夹为正常邮件文件夹
folder_A = "path_to_folder_A"  # 垃圾邮件文件夹路径
folder_B = "path_to_folder_B"  # 正常邮件文件夹路径

# 读取文件内容
spam_texts = read_files(folder_A)
ham_texts = read_files(folder_B)

# 数据和标签
texts = spam_texts + ham_texts
labels = [1] * len(spam_texts) + [0] * len(ham_texts)

print(f"垃圾邮件数量: {len(spam_texts)}, 正常邮件数量: {len(ham_texts)}")

# 特征提取
vectorizer = TfidfVectorizer(stop_words='english', max_features=1000, ngram_range=(1, 2))
X = vectorizer.fit_transform(texts)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.3, random_state=42)

# 步骤 2:处理类别不平衡
model = LogisticRegression(class_weight='balanced', random_state=42)
model.fit(X_train, y_train)

# 步骤 3:评估模型
y_pred = model.predict(X_test)
print("分类报告:\n", classification_report(y_test, y_pred))
print("混淆矩阵:\n", confusion_matrix(y_test, y_pred))

# 步骤 4:判定新的邮件是否是垃圾邮件
def predict_spam_or_ham(new_email_text, threshold=0.5):
    new_email_vec = vectorizer.transform([new_email_text])
    predicted_prob = model.predict_proba(new_email_vec)[0]
    print(f"预测概率:{predicted_prob}")
    return "垃圾邮件" if predicted_prob[1] > threshold else "正常邮件"

# 示例:输入一个新的邮件文本进行预测
new_email = "Congratulations! You've won a free vacation. Claim now!"
result = predict_spam_or_ham(new_email)
print(f"新邮件预测结果: {result}")

# 可尝试调整分类阈值
adjusted_threshold = 0.6
result_adjusted = predict_spam_or_ham(new_email, threshold=adjusted_threshold)
print(f"新邮件预测结果 (调整阈值 {adjusted_threshold}): {result_adjusted}")

改进点详细说明

  1. 类别平衡

    • class_weight='balanced' 用于在数据分布不均衡时平衡类别权重。
    • 打印垃圾邮件和正常邮件数量,及时发现数据分布问题。
  2. 特征优化

    • max_features=1000 限制特征数量,避免高维稀疏特征对模型性能的影响。
    • ngram_range=(1, 2) 增加特征的上下文表达能力。
  3. 分类阈值调整

    • 提供 threshold 参数以灵活调整垃圾邮件判定的概率阈值,适应不同应用场景。
  4. 调试信息

    • classification_reportconfusion_matrix 帮助评估模型的准确率、召回率和精确率。
  5. 文件路径检查和异常处理

    • 在读取文件时检查路径合法性,并捕获异常,防止单个文件导致整个流程中断。

测试步骤

  1. 将垃圾邮件放入 folder_A,正常邮件放入 folder_B
  2. 调整特征提取参数,如 max_featuresngram_range
  3. 替换 new_email 测试不同邮件内容,并观察概率和分类结果。

需要注意的是,这时候还是需要再微调,因为运行程序后你会发现识别还是不准确,在不断调整后,

将 adjusted_threshold = 0.6 改成 adjusted_threshold = 0.555,最后用如下文本分别测试:

# 示例:输入一个新的邮件文本进行预测
#new_email = "Congratulations! You've won a free vacation. Claim now!"
#new_email = "hi Dad , Will you go to China?"
new_email = "Congratulations! You won a chance to travel for free. Claim now!"
new_email = "This is a notice of school opening"
result = predict_spam_or_ham(new_email)
print(f"新邮件预测结果: {result}")

# 可尝试调整分类阈值
adjusted_threshold = 0.555
result_adjusted = predict_spam_or_ham(new_email, threshold=adjusted_threshold)
print(f"新邮件预测结果 (调整阈值 {adjusted_threshold}): {result_adjusted}")

 以下结果清晰展示了成功识别了不同的文本。

当然,因为样本数据量很少,整个模型的识别率还是很低,因此需要不断累计足够的样本,才能更精准地识别出垃圾邮件。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/927942.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

字符串处理(二)

第1题 篮球比赛 查看测评数据信息 学校举行篮球比赛,请设计一个计分系统统计KIN、WIN两队分数,并输出分数和结果! 如果平分就输出‘GOOD’,否则输出获胜队名! 输入格式 输入数据共n1行, 第1行n&#xf…

【数据库系列】Liquibase 与 Flyway 的详细对比

在现代软件开发中,数据库版本控制是一个至关重要的环节。为了解决数据库迁移和变更管理的问题,开发者们通常会使用工具,如 Liquibase 和 Flyway。本文将对这两个流行的数据库迁移工具进行详细比较,从基础概念、原理、优缺点到使用…

企业品牌曝光的新策略:短视频矩阵系统

企业品牌曝光的新策略:短视频矩阵系统 在当今数字化时代,短视频已经渗透到我们的日常生活之中,成为连接品牌与消费者的关键渠道。然而,随着平台于7月20日全面下线了短视频矩阵的官方接口,许多依赖于此接口的小公司和内…

PostgreSQL最常用数据类型-重点说明自增主键处理

简介 PostgreSQL提供了非常丰富的数据类型,我们平常使用最多的基本就3类: 数字类型字符类型时间类型 这篇文章重点介绍这3中类型,因为对于高并发项目还是推荐:尽量使用简单类型,把运算和逻辑放在应用中,…

做异端中的异端 -- Emacs裸奔之路4: 你不需要IDE

确切地说,你不需要在IDE里面编写或者阅读代码。 IDE用于Render资源文件比较合适,但处理文本,并不划算。 这的文本文件,包括源代码,配置文件,文档等非二进制文件。 先说说IDE带的便利: 函数或者变量的自动…

ospf协议(动态路由协议)

ospf基本概念 定义 OSPF 是典型的链路状态路由协议,是目前业内使用非常广泛的 IGP 协议之一。 目前针对 IPv4 协议使用的是 OSPF Version 2 ( RFC2328 );针对 IPv6 协议使用 OSPF Version 3 ( RFC2740 )。…

【热门主题】000072 分布式数据库:开启数据管理新纪元

前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 【热…

Python 3 教程第33篇(MySQL - mysql-connector 驱动)

Python MySQL - mysql-connector 驱动 MySQL 是最流行的关系型数据库管理系统,如果你不熟悉 MySQL,可以阅读我们的 MySQL 教程。 本章节我们为大家介绍使用 mysql-connector 来连接使用 MySQL, mysql-connector 是 MySQL 官方提供的驱动器。…

ENSP IPV6-over-IPV4

IPv6是网络层协议的第二代标准协议,一个IPv6地址同样可以分为网络前缀和主机ID两个部分。 可以将IPV4的网络看成IPV6的承载网,只有IPv4网络是连通的,则IPv6网络才有可能连通。所以配置的时候需要先配置IPv4网络的路由功能,再配IP…

《数据挖掘:概念、模型、方法与算法(第三版)》

嘿,数据挖掘的小伙伴们!今天我要给你们介绍一本超级实用的书——《数据挖掘:概念、模型、方法与算法》第三版。这本书是数据挖掘领域的经典之作,由该领域的知名专家编写,系统性地介绍了在高维数据空间中分析和提取大量…

53 基于单片机的8路抢答器加记分

目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 首先有三个按键 分别为开始 暂停 复位,然后八个选手按键,开机显示四条杠,然后按一号选手按键,数码管显示30,这…

从零开始写游戏之斗地主-网络通信

在确定了数据结构后,原本是打算直接开始写斗地主的游戏运行逻辑的。但是突然想到我本地写出来之后,也测试不了啊,所以还是先写通信模块了。 基本框架 在Java语言中搞网络通信,那么就得请出Netty这个老演员了。 主要分为两个端&…

Logistic Regression(逻辑回归)、Maximum Likelihood Estimatio(最大似然估计)

Logistic Regression(逻辑回归)、Maximum Likelihood Estimatio(最大似然估计) 逻辑回归(Logistic Regression,LR)逻辑回归的基本思想逻辑回归模型逻辑回归的目标最大似然估计优化方法 逻辑回归…

数据类型.

数据类型分类 数值类型 tinyint类型 以tinyint为例所有数值类型默认都是有符号的,无符号的需要在后面加unsignedtinyint的范围在-128~127之间无符号的范围在0~255之间(类比char) create database test_db; use test_db;建表时一定要跟着写上属性 mysql> creat…

IDEA使用HotSwapHelper进行热部署

目录 前言JDK1.8特殊准备DECVM安装插件安装与配置参考文档相关下载 前言 碰到了一个项目,用jrebel启动项目时一直报错,不用jrebel时又没问题,找不到原因,又不想放弃热部署功能 因此思考能否通过其他方式进行热部署,找…

机器学习算法(六)---逻辑回归

常见的十大机器学习算法: 机器学习算法(一)—决策树 机器学习算法(二)—支持向量机SVM 机器学习算法(三)—K近邻 机器学习算法(四)—集成算法 机器学习算法(五…

【Electron学习笔记(四)】进程通信(IPC)

进程通信(IPC) 进程通信(IPC)前言正文1、渲染进程→主进程(单向)2、渲染进程⇌主进程(双向)3、主进程→渲染进程 进程通信(IPC) 前言 在Electron框架中&…

GateWay使用手册

好的&#xff0c;下面是优化后的版本。为了提高可读性和规范性&#xff0c;我对内容进行了结构化、简化了部分代码&#xff0c;同时增加了注释说明&#xff0c;便于理解。 1. 引入依赖 在 pom.xml 中添加以下依赖&#xff1a; <dependencies><!-- Spring Cloud Gate…

【Go 基础】channel

Go 基础 channel 什么是channel&#xff0c;为什么它可以做到线程安全 Go 的设计思想就是&#xff1a;不要通过共享内存来通信&#xff0c;而是通过通信来共享内存。 前者就是传统的加锁&#xff0c;后者就是 channel。也即&#xff0c;channel 的主要目的就是在多任务间传递…

C# 解决【托管调试助手 “ContextSwitchDeadlock“:……】问题

文章目录 一、遇到问题二、解决办法 一、遇到问题 托管调试助手 “ContextSwitchDeadlock”:“CLR 无法从 COM 上下文 0x56e81e70 转换为 COM 上下文 0x56e81d48&#xff0c;这种状态已持续 60 秒。拥有目标上下文/单元的线程很有可能执行的是非泵式等待或者在不发送 Windows …