分布式集群下如何做到唯一序列号

优质博文:IT-BLOG-CN

分布式架构下,生成唯一序列号是设计系统常常会遇到的一个问题。例如,数据库使用分库分表的时候,当分成若干个sharding表后,如何能够快速拿到一个唯一序列号,是经常遇到的问题。实现思路如下:

【1】数据库自增长序列或字段:全数据库唯一。
【优点】:简单,代码方便,性能可以接受。数字ID天然排序,对分页后者需要排序的结果很有帮组。适合小应用,无需分表,无高并发性能要求。
【缺点】:不同数据库实现不同,在水平分表时,使用自增ID时可能会出现ID冲突。同时在高并发的情况下需要使用事务。在性能达不到要求的情况下,比较难于扩展。如果多个系统需要合并或者设计到数据迁移会相当痛苦。
【优化】:针对主库单点,如果有多个Master库,则每个Master库设置的起始数字不一样,步长一样,可以是Master的个数。比如:Master1生成的是14710Master2生成的是2,5,8,11Master3生成的是3,6,9,12。这样就可以有效生成集群中的唯一ID,也可以大大降低ID生成数据库操作的负载。

【2】UUID:常见的方式。可以利用数据库也可以利用程序生成32位的16进制格式的字符串,唯一性很高。
【优点】:简单,方便,生产ID性能非常好且全球基本唯一,在数据迁移和系统后期合并,或数据库变更等情况下都可应对。
【缺点】:没有排序,无法保证趋势递增。UUID使用字符串存储,查询效率低。存储空间较大,如果数据海量就绪考虑存储量问题,传输数据量大。

UUID是一种标准的128位标识符,几乎可以保证全局唯一。Java中可以使用java.util.UUID来生成:

import java.util.UUID;

public class UniqueIDGenerator {
    public static String generateUUID() {
        return UUID.randomUUID().toString();
    }
}

【3】Redis生成ID 当使用数据库来生成ID性能不够要求的时候,我们可以尝试使用Redis来生成ID。这主要依赖于Redis是单线程的,所以也可以用生成全局唯一的ID。可以用Redis的原子操作INCRINCRBY来实现。可以使用Redis集群来获取更高的吞吐量。假如一个集群中有5Redis。可以初始化每台Redis的值分别是1,2,3,4,5,然后步长都是5。各个Redis生成的ID为:
A:1,6,11,16,21
B:2,7,12,17,22
C:3,8,13,18,23
D:4,9,14,19,24
E:5,10,15,20,25
这个,随便负载到哪个机器确定好,未来很难做修改。但是3-5台服务器基本能够满足器上,都可以获得不同的ID。但是步长和初始值一定需要事先需要了。使用Redis集群也可以防止单点故障(系统中一点失效,就会让整个系统无法运作的部件)的问题。另外,比较适合使用Redis来生成每天从0开始的流水号。比如订单号=日期+当日自增长号。可以每天在Redis中生成一个Key,使用INCR进行累加。
【优点】:不依赖于数据库,灵活方便,且性能优于数据库。数字ID天然排序,对分页或者需要排序的结果很有帮助。
【缺点】:如果系统中没有Redis,还需要引入新的组件,增加系统复杂度。需要编码和配置的工作量比较大。

使用Redis的原子操作,如INCR命令,可以生成全局唯一的序列号。Redis的高性能和分布式特性使其成为一个不错的选择

import redis.clients.jedis.Jedis;

public class RedisIdGenerator {
    private Jedis jedis;
    private String key;

    public RedisIdGenerator(String redisHost, int redisPort, String key) {
        this.jedis = new Jedis(redisHost, redisPort);
        this.key = key;
    }

    public long nextId() {
        return jedis.incr(key);
    }
}

【4】Twitter(推特) 的snowflake算法: twitter在把存储系统从MySQL迁移到Cassandra(一套开源分布式NoSQL数据库系统)的过程中由于Cassandra没有顺序ID生成机制,于是自己开发了一套全局唯一ID生成服务:Snowflake
 ● 41位的时间序列(精确到毫秒,41位的长度可以使用69年)
 ● 10位的机器标识(10位的长度最多支持部署1024个节点)
 ● 12位的计数顺序号(12位的计数顺序号支持每个节点每毫秒产生4096ID序号) 最高位是符号位,始终为0

Snowflake的结构如下(每部分用-分开): 一共加起来刚好64位,为一个Long型。(转换成字符串后长度最多19)
0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
snowflake生成的ID整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenterworkerId作区分),并且效率较高。经测试snowflake每秒能够产生26万个ID
【优点】:高性能,低延迟;独立的应用;按时间有序。
【缺点】:需要独立的开发和部署。在单机上是递增的,但是由于涉及到分布式环境,每台机器上的时钟不可能完全同步,也许有时候也会出现不是全局递增的情况。

Java实现的Snowflake算法示例:

public class SnowflakeIdGenerator {
    private final long twepoch = 1288834974657L;
    private final long workerIdBits = 5L;
    private final long datacenterIdBits = 5L;
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    private final long sequenceBits = 12L;
    private final long workerIdShift = sequenceBits;
    private final long datacenterIdShift = sequenceBits + workerIdBits;
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);

    private long workerId;
    private long datacenterId;
    private long sequence = 0L;
    private long lastTimestamp = -1L;

    public SnowflakeIdGenerator(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }

    public synchronized long nextId() {
        long timestamp = timeGen();

        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0L;
        }

        lastTimestamp = timestamp;

        return ((timestamp - twepoch) << timestampLeftShift) |
                (datacenterId << datacenterIdShift) |
                (workerId << workerIdShift) |
                sequence;
    }

    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    protected long timeGen() {
        return System.currentTimeMillis();
    }
}

【5】MongoDBObjectId MongoDBObjectIdsnowflake算法类似。它设计成轻量型的,不同的机器都能用全局唯一的同种方法方便地生成它。MongoDB从一开始就设计用来作为分布式数据库,处理多个节点是一个核心要求。使其在分片环境中要容易生成得多。

4个字节是从标准纪元开始的时间戳,单位为秒。时间戳,与随后的5个字节组合起来,提供了秒级别的唯一性。由于时间戳在前,这意味着ObjectId大致会按照插入的顺序排列。这对于某些方面很有用,如将其作为索引提高效率。这4个字节也隐含了文档创建的时间。绝大多数客户端类库都会公开一个方法从ObjectId获取这个信息。

接下来的3字节是所在主机的唯一标识符。通常是机器主机名的散列值。这样就可以确保不同主机生成不同的ObjectId,不产生冲突。

为了确保在同一台机器上并发的多个进程产生的ObjectId是唯一的,接下来的两字节来自产生ObjectId的进程标识符PID
9字节保证了同一秒钟不同机器不同进程产生的ObjectId是唯一的。后3字节就是一个自动增加的计数器,确保相同进程同一秒产生的ObjectId也是不一样的。同一秒钟最多允许每个进程拥有2563(16 777 216)个不同的ObjectId

【6】Zookeeper Zookeeper可以用来实现分布式唯一ID生成器。通过创建顺序节点,可以确保每个节点的名称是唯一且递增的。

【7】其他一些方案: 比如京东淘宝等电商的订单号生成。因为订单号和用户id在业务上的区别,订单号尽可能要多些冗余的业务信息,比如:滴滴:时间+起点编号+车牌号 淘宝订单:时间戳+用户ID 其他电商:时间戳+下单渠道+用户ID,有的会加上订单第一个商品的ID。而用户ID,则要求含义简单明了,包含注册渠道即可,尽量短。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/927886.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT/AI辅助网络安全运营之-数据解压缩

在网络安全的世界中&#xff0c;经常会遇到各种压缩的数据&#xff0c;比如zip压缩&#xff0c;比如bzip2压缩&#xff0c;gzip压缩&#xff0c;xz压缩&#xff0c;7z压缩等。网络安全运营中需要对这些不同的压缩数据进行解压缩&#xff0c;解读其本意&#xff0c;本文将探索一…

C++小问题

怎么分辨const修饰的是谁 是限定谁不能被改变的&#xff1f; 在C中&#xff0c;const关键字的用途和位置非常关键&#xff0c;它决定了谁不能被修改。const可以修饰变量、指针、引用等不同的对象&#xff0c;并且具体的作用取决于const的修饰位置。理解const的规则能够帮助我们…

Docker中配置Mysql主从备份

Mysql配置主从备份 一、Docker中实现跨服务器主从备份二、配置步骤1.配置主库2.配置从库3.遇到问题3.其它使用到的命令 一、Docker中实现跨服务器主从备份 在 Docker 中配置 MySQL 主从备份主要通过 MySQL 主从复制实现 二、配置步骤 1.配置主库 # 进入mysql主库容器 docke…

下载maven 3.6.3并校验文件做md5或SHA512校验

一、下载Apache Maven 3.6.3 Apache Maven 3.6.3 官方下载链接&#xff1a; 二进制压缩包&#xff08;推荐&#xff09;: ZIP格式: https://archive.apache.org/dist/maven/maven-3/3.6.3/binaries/apache-maven-3.6.3-bin.zipTAR.GZ格式: https://archive.apache.org/dist/…

C++趣味编程:基于树莓派Pico的模拟沙漏-倾斜开关与LED的互动实现

沙漏,作为一种古老的计时工具,利用重力让沙子通过狭小通道,形成了计时效果。在现代,我们可以通过电子元件模拟沙漏的工作原理。本项目利用树莓派Pico、倾斜开关和LED,实现了一个电子沙漏。以下是项目的详细技术解析与C++代码实现。 一、项目概述 1. 项目目标 通过倾斜开关…

pycharm链接neo4j(导入文件)

1.新建csv文件 2.写入文件 3.运行代码 import csv from py2neo import Graph, Node, Relationship# 连接到Neo4j数据库&#xff0c;使用Bolt协议 graph Graph("bolt://localhost:7687", auth("neo4j", "password"))# 读取CSV文件 with open(…

【C++】多线程

目录 一 概念 1 多线程 2 多进程与多线程 3 多线程理解 二 创建线程 1 thread 2 join() 和 detach() 3 this_thread 三 std::mutex 1 lock 和 unlock 2 lock_guard 3 unique_lock 四 condition_variable 五 std::atomic 一 概念 1 多线程 在C11之前&#xff0…

Kafka 图形化工具 Eagle安装

Kafka 图形化工具 Eagle 3.0.1版本安装 1、安装JDK jdk安装 2、安装kafka 如未安装kafka&#xff0c;需要先安装完kafka 3、下载kafka-eagle 官网下载地址 wget https://github.com/smartloli/kafka-eagle-bin/archive/v3.0.1.tar.gz #移动到安装目录 mv v3.0.1.tar.gz…

vue实现echarts饼图自动轮播

echarts官网&#xff1a;Examples - Apache ECharts echartsFn.ts 把echarts函数封装成一个文件 import * as echarts from "echarts";const seriesData [{"value": 12,"name": "过流报警"},{"value": 102,"name&qu…

CSS动画案例6

目录 一、介绍二、静态页面的布局1.HTML部分2.CSS 三、动画交互四、结束语 一、介绍 本节内容我们来仿照一个网站&#xff08;戳我进网站&#xff09;的进入页面时的doing动画部分&#xff0c;首先是大标题从最小变为最大&#xff0c;然后是副标题从下向上走&#xff0c;最后是…

Proteus8.17下载安装教程

Proteus是一款嵌入式系统仿真开发软件&#xff0c;实现了从原理图设计、单片机编程、系统仿真到PCB设计&#xff0c;真正实现了从概念到产品的完整设计&#xff0c;其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等&#xff0c;能够帮助用…

工作-k8s问题处理篇

前言&#xff1a;公司这边为集团&#xff0c;所以项目较多&#xff0c;我目前总负责的项目架构有十六个&#xff0c;其中还有海外项目&#xff0c;不过底下也有一定的细分&#xff0c;同事解决不了的问题会升级到我这&#xff0c;只k8s容器平台常用的就有三种&#xff0c;一种是…

spring boot3.3.5 logback-spring.xml 配置

新建 resources/logback-spring.xml 控制台输出颜色有点花 可以自己更改 <?xml version"1.0" encoding"UTF-8"?> <!--关闭文件扫描 scanfalse --> <configuration debug"false" scan"false"><springProperty …

MySQL--SQL优化

目录 1 插入数据 1.1 insert优化 1.1.1 批量插入 1.1.2 手动提交事务 1.1.3 主键顺序插入 1.2 大批量插入数据 2 主键优化 2.1 数据组织方式 2.2 页分裂 2.3 页合并 2.4 主键设计原则 3 order by优化 4 group by优化 1. 使用索引 2. 减少数据集大小 3. 使用合适的聚…

【计算机网络】实验2:总线型以太网的特性

实验 2&#xff1a;总线型以太网的特性 一、 实验目的 加深对MAC地址&#xff0c;IP地址&#xff0c;ARP协议的理解。 了解总线型以太网的特性&#xff08;广播&#xff0c;竞争总线&#xff0c;冲突&#xff09;。 二、 实验环境 • Cisco Packet Tracer 模拟器 三、 实…

Java函数式编程【二】【Stream的装饰】【中间操作】【map映射器】【摊平映射器flatMap】

一、Java的Stream流式编程中的中间操作 Java的Stream流式编程中&#xff0c;中间操作是对数据流进行处理的一种方式&#xff0c;这些操作通常返回流对象本身&#xff0c;以便可以链接更多的操作。以下是一些常见的中间操作&#xff1a; filter(Predicate predicate) - 用于通过…

使用pymupdf提取PDF文档中的文字和其颜色

最近我在捣鼓一个PDF文件&#xff0c;想把它里面的文字和文字颜色给提取出来。后来发现有个叫pymupdf的库能搞定这事儿。操作起来挺简单的&#xff0c;pymupdf的示例文档里就有现成的代码可以参考。 how-to-extract-text-with-color 我本地的测试代码如下&#xff1a; impor…

MYSQL 多表练习

Sutdent表的定义 ---------------------------------------------------------------------------------------------------- | 字段名 | Id | Name | Sex | Birth | Department | Address | -------------------…

2024年12月HarmonyOS应用开发者基础认证全新题库

注意事项&#xff1a;切记在考试之外的设备上打开题库进行搜索&#xff0c;防止切屏三次考试自动结束&#xff0c;题目是乱序&#xff0c;每次考试&#xff0c;选项的顺序都不同 更新时间&#xff1a;2024年12月3日 这是基础认证题库&#xff0c;不是高级认证题库注意看清楚标…

一文解析Kettle开源ETL工具!

ETL&#xff08;Extract, Transform, Load&#xff09;工具是用于数据抽取、转换和加载的软件工具&#xff0c;用于支持数据仓库和数据集成过程。Kettle作为传统的ETL工具备受用户推崇。本文就来详细说下Kettle。 一、Kettle是什么&#xff1f; Kettle 是一款开源的 ETL&#x…