大语言模型微调与 XTuner 微调实战

1 大语言模型微调

1.1 什么是微调

大语言模型微调(Fine-tuning of Large Language Models)是指在预训练的大型语言模型基础上,使用特定任务的数据进一步训练模型,以使其更好地适应和执行特定任务的过程,用于使LLM(Large Language Models)获得处理特殊任务的能力。

1.2 微调范式

LLM的下游应用中,增量预训练指令跟随是经常会用到两种的微调模式:

1.2.1 增量预训练微调

使用场景:让基座模型学习到一些新知识,如某个垂类领域的常识
训练数据:文章、书籍、代码等
增量训练的数据都是一个一个的陈述句,没有问答形式存在。

为了让LLM知道什么时候开始一段话,什么时候结束一段话,实际训练时需要对数据添加起始符(BOS)和结束符(EOS)。大多数的模型都是使用 < s >作为起始符,< / s> 作为结束符。
示例:< s >世界第一高峰是珠穆朗玛峰< /s >

训练LLM时,为了让模型学会“世界第一高峰是珠穆朗玛峰”,并知道何时停止,对应的训练数据以及标签如下所示:
在这里插入图片描述
在这里插入图片描述

1.2.2 指令跟随微调

使用场景:让模型学会对话模板,根据人类指令进行对话
训练数据:高质量的对话、问答数据

在实际对话时,通常会有三种角色:

  • System: 给定一些上下文信息,比如“你是一个安全的AI助手
  • User:实际用户,会提出一些问题,比如“世界第一高峰是?“
  • Assistant:根据User的输入,结合System的上下文信息,做出回答.比如“珠穆朗玛峰”

在使用对话模型时,通常是不会感知到这三种角色的。

在这里插入图片描述

简单示例:
在这里插入图片描述

  • 对话模板
    对话模板是为了能够让LLM区分出,System、User和Assistant,不同的模型会有不同的模板。
    在这里插入图片描述在这里插入图片描述
  • Loss 计算
    不同于增量预训练微调,数据中会有 Input 和 Output,希望模型学会的是答案(Output),而不是问题 (Input),训练时只会对答案 (Output) 部分计算Loss。
    训练时,会和推理时保持一致,对数据添加相应的对话模板,以下为InternLM的训练数据和标签
    在这里插入图片描述在这里插入图片描述

2 微调原理

2.1 LORA

Lora(Low-Rank Adaptation of Large Langage Models),大语言模型的低阶适应,是一种参数高效性微调方法。

详情请见论文 Lora: Low-Rank Adaptation of Large Langage Models。

LLM的参数量主要集中在模型中的Linear,训练这些参数会耗费大量的显存。LoRA通过在原本的Linear旁,新增一个支路,包含两个连续的小Linear,新增的这个支路通常叫做Adapter,Adapter参数量远小于原本的Linear,能大幅降低训练的显存消耗。

LoRA利用对应下游任务的数据,只通过训练新加部分参数来适配下游任务。当训练好新的参数后,将新参数和老的模型参数合并,这样既能在新任务上到达fine-tune整个模型的效果,又不会在推理的时候增加耗时。

在这里插入图片描述

图中蓝色部分为预训练好的模型参数,LoRA 在预训练好的模型结构旁边加入了 A 和 B 两个结构,这两个结构的参数分别初始化为高斯分布和 0。A 的输入维度和 B 的输出维度分别与原始模型的输入输出维度相同,而A的输出维度和B 的输入维度是一个远小于原始模型输入输出维度的值,这就是 low-rank 的体现,可以极大地减少待训练的参数。

在训练时只更新 A、B 构成的 Adapter 的参数,预训练好的模型参数是固定不变的。在推断时利用重参数思想,将 Adapter 与 W 合并,这样在推断时不会引入额外的计算。而且对于不同的下游任务,只需要在预训练模型基础上重新训练 Adapter,这样也能加快大模型的训练节奏。

BaseModel:

  • BaseModel 参与训练并更新参数
  • 需要保存 BaseModel 中参数的优化器状态

LoRA:

  • BaseModel 只参与 Forward
  • 只有 Adapter 部分 Backward 更新参数
  • 只需保存 Adapter 中参数的优化器状态

2.1.1 本征维度

LoRA的工作原理是因为大模型存在本征维度的概念,只需要调整少量参数就能在下游任务上得到很好的效果。

对于一个参数量为D的模型,训练该模型,也就意味着在D维空间上寻找有效的解。但是D可能是冗余的,可能实际上只需要优化其中的d个参数就可以找到一个有效的解。

公式:
θ ( D ) = θ 0 ( D ) + P θ ( d ) \quad\theta^{(D)}=\theta_0^{(D)}+P\theta^{(d)} θ(D)=θ0(D)+Pθ(d)

  • θ ( D ) \theta^{(D)} θ(D) 表示模型原有的 D D D 维的优化参数,这写参数是在训练时需要不断更新的
  • θ 0 ( D ) \theta_0^{(D)} θ0(D) 表示随机初始化的一个参数并且在训练时是不进行更新的, P P P 是一个随机初始化的 D × d D× d D×d 大小的矩阵且训练时也不进行更新
  • θ θ θ 表示待优化的 d d d 维参数。也就是说可以在训练网络时只更新d维参数,就可以达到该网络应有的效果
  • 这个 d d d 就是所谓的该模型的本征维度

在这里插入图片描述

预训练模型表征能力越强(训练得越好),本征维度越小;模型参数量越大,本征维度越小;泛化性能越好,本征维度越小。

2.2 QLORA

QLoRA是一种高效的模型微调方法,使用一种新颖的高精度技术将预训练模型量化为4-bit,然后添加一小组可学习的低秩适配器权重( Low-rank Adapter weights),这些权重通过量化权重的反向传播梯度进行调优。
在这里插入图片描述
QLORA包含一种低精度存储数据类型(4-bit NormalFloat,简写为NF4)和一种计算数据类型(16-bit BrainFloat)。在实践中,QLORA权重张量使用时,需要将将张量去量化为BFloat16,然后在16位计算精度下进行矩阵乘法运算,在计算梯度时只对LoRA的参数计算梯度。

详情请见论文 QLoRA: Efficient Finetuning of Quantized LLMs

  • BaseModel 量化为 4-bit
  • 优化器状态在 CPU 与 GPU 间 Offload
  • BaseModel 只参与Forward
  • 只有 Adapter 部分 Backward 更新参数
  • 只需保存 Adapter 中参数的优化器状态

3 XTuner 微调实践

3.1 XTuner

XTuner 是一个高效、灵活且全能的大模型微调工具库,兼容多种大语言模型和多模态图文模型的预训练与微调,支持各种数据格式和微调算法。提供增量预训练、指令微调与 Agent 微调等多种微调方式。
在这里插入图片描述

3.1.1 XTuner数据引擎

XTuner数据引擎支持多数据样本拼接,增强并行性,充分利用显存资源。

在这里插入图片描述

3.1.2 优化技巧

Flash Attention 和 DeepSpeed ZeRO 是 XTuner 最重要的两个优化技巧。

  • Flash Attention
    Flash Attention 将 Attention 计算并行化,避免了计算过程中Attention Score NxN的显存占用(训练过程中的N都比较大)。XTuner 默认启动Flash Attention。

  • DeepSpeed ZeRO
    ZeRO 优化,通过将训练过程中的参数、梯度和优化器状态切片保存,能够在多 GPU 训练时显著节省显存。除了将训练中间状态切片外,DeepSpeed 训练时使用 FP16 的权重,相较于 Pytorch 的 AMP 训练,在单 GPU 上也能大幅节省显存。

在这里插入图片描述

3.2 实践环境配置与数据准备

本节中,我们将演示如何安装 XTuner。 推荐使用 Python-3.10 的 conda 虚拟环境安装 XTuner。

3.2.1 环境配置

步骤 0. 使用 conda 先构建一个 Python-3.10 的虚拟环境

cd ~
#git clone 本repo
git clone https://github.com/InternLM/Tutorial.git -b camp4
mkdir -p /root/finetune && cd /root/finetune
conda create -n xtuner-env python=3.10 -y
conda activate xtuner-env

步骤 1. 安装 XTuner

git clone https://github.com/InternLM/xtuner.git
cd /root/finetune/xtuner

pip install  -e '.[all]'
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121
pip install transformers==4.39.0

如果安装出错:

ERROR: Could not find a version that satisfies the requirement
bitsandbytes>=0.40.0.post4 (from xtuner) (from versions: none)

可以 Ctrl + C 退出后换成 pip install --trusted-host mirrors.aliyun.com -e ‘.[deepspeed]’ -i https://mirrors.aliyun.com/pypi/simple/

查看安装:

pip show xtuner

3.2.2 数据准备

步骤 0. 创建一个新的文件夹用于存储微调数据

mkdir -p /root/finetune/data && cd /root/finetune/data
cp -r /root/Tutorial/data/assistant_Tuner.jsonl  /root/finetune/data

步骤 1. 创建修改脚本
我们写一个脚本生成修改我们需要的微调训练数据,在当前目录下创建一个 change_script.py 文件,内容如下:

# 创建 `change_script.py` 文件
touch /root/finetune/data/change_script.py

change_script.py内容如下

import json
import argparse
from tqdm import tqdm

def process_line(line, old_text, new_text):
    # 解析 JSON 行
    data = json.loads(line)
    
    # 递归函数来处理嵌套的字典和列表
    def replace_text(obj):
        if isinstance(obj, dict):
            return {k: replace_text(v) for k, v in obj.items()}
        elif isinstance(obj, list):
            return [replace_text(item) for item in obj]
        elif isinstance(obj, str):
            return obj.replace(old_text, new_text)
        else:
            return obj
    
    # 处理整个 JSON 对象
    processed_data = replace_text(data)
    
    # 将处理后的对象转回 JSON 字符串
    return json.dumps(processed_data, ensure_ascii=False)

def main(input_file, output_file, old_text, new_text):
    with open(input_file, 'r', encoding='utf-8') as infile, \
         open(output_file, 'w', encoding='utf-8') as outfile:
        
        # 计算总行数用于进度条
        total_lines = sum(1 for _ in infile)
        infile.seek(0)  # 重置文件指针到开头
        
        # 使用 tqdm 创建进度条
        for line in tqdm(infile, total=total_lines, desc="Processing"):
            processed_line = process_line(line.strip(), old_text, new_text)
            outfile.write(processed_line + '\n')

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Replace text in a JSONL file.")
    parser.add_argument("input_file", help="Input JSONL file to process")
    parser.add_argument("output_file", help="Output file for processed JSONL")
    parser.add_argument("--old_text", default="尖米", help="Text to be replaced")
    parser.add_argument("--new_text", default="闻星", help="Text to replace with")
    args = parser.parse_args()

    main(args.input_file, args.output_file, args.old_text, args.new_text)

然后修改如下: 修改 --new_text 中 default=“闻星” 为你的名字:
在这里插入图片描述

步骤 2. 执行脚本

# usage:python change_script.py {input_file.jsonl} {output_file.jsonl}
cd ~/finetune/data
python change_script.py ./assistant_Tuner.jsonl ./assistant_Tuner_change.jsonl

assistant_Tuner_change.jsonl 是修改后符合 XTuner 格式的训练数据。

步骤 3. 查看数据

cat assistant_Tuner_change.jsonl | head -n 3

3.3 模型启动

步骤 0. 复制模型

在InternStudio开发机中的已经提供了微调模型,可以直接软链接即可。

本模型位于/root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat

mkdir /root/finetune/models

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/finetune/models/internlm2_5-7b-chat

步骤 1. 修改 Config
获取官方写好的 config,修改部分为

cd /root/finetune
mkdir ./config
cd config
xtuner copy-cfg internlm2_5_chat_7b_qlora_alpaca_e3 ./
#######################################################################
#                          PART 1  Settings                           #
#######################################################################
- pretrained_model_name_or_path = 'internlm/internlm2_5-7b-chat'
+ pretrained_model_name_or_path = '/root/finetune/models/internlm2_5-7b-chat'

- alpaca_en_path = 'tatsu-lab/alpaca'
+ alpaca_en_path = '/root/finetune/data/assistant_Tuner_change.jsonl'


evaluation_inputs = [
-    '请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
+    '请介绍一下你自己', 'Please introduce yourself'
]

#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
alpaca_en = dict(
    type=process_hf_dataset,
-   dataset=dict(type=load_dataset, path=alpaca_en_path),
+   dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)),
    tokenizer=tokenizer,
    max_length=max_length,
-   dataset_map_fn=alpaca_map_fn,
+   dataset_map_fn=None,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    remove_unused_columns=True,
    shuffle_before_pack=True,
    pack_to_max_length=pack_to_max_length,
    use_varlen_attn=use_varlen_attn)

步骤 2. 启动微调
完成了所有的准备工作后,我们就可以正式的开始我们下一阶段的旅程:XTuner 启动~!

当我们准备好了所有内容,我们只需要将使用 xtuner train 命令令即可开始训练。

xtuner train 命令用于启动模型微调进程。该命令需要一个参数:CONFIG 用于指定微调配置文件。这里我们使用修改好的配置文件
internlm2_5_chat_7b_qlora_alpaca_e3_copy.py。
训练过程中产生的所有文件,包括日志、配置文件、检查点文件、微调后的模型等,默认保存在 work_dirs 目录下,我们也可以通过添加
–work-dir 指定特定的文件保存位置。–deepspeed 则为使用 deepspeed, deepspeed 可以节约显存。

运行命令进行微调:

cd /root/finetune
conda activate xtuner-env

xtuner train ./config/internlm2_5_chat_7b_qlora_alpaca_e3_copy.py --deepspeed deepspeed_zero2 --work-dir ./work_dirs/assistTuner

步骤 3. 权重转换

模型转换的本质其实就是将原本使用 Pytorch 训练出来的模型权重文件转换为目前通用的 HuggingFace 格式文件,那么我们可以通过以下命令来实现一键转换。

我们可以使用 xtuner convert pth_to_hf 命令来进行模型格式转换。

xtuner convert pth_to_hf 命令用于进行模型格式转换。该命令需要三个参数:
CONFIG 表示微调的配置文件,
PATH_TO_PTH_MODEL 表示微调的模型权重文件路径,即要转换的模型权重,
SAVE_PATH_TO_HF_MODEL 表示转换后的 HuggingFace 格式文件的保存路径。

除此之外,我们其实还可以在转换的命令中添加几个额外的参数,包括:

参数名解释
–fp32代表以fp32的精度开启,假如不输入则默认为fp16
–max-shard-size {GB}代表每个权重文件最大的大小(默认为2GB)
cd /root/finetune/work_dirs/assistTuner

conda activate xtuner-env

# 先获取最后保存的一个pth文件
pth_file=`ls -t /root/finetune/work_dirs/assistTuner/*.pth | head -n 1 | sed 's/:$//'`
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_5_chat_7b_qlora_alpaca_e3_copy.py ${pth_file} ./hf

转换完成后,可以看到模型被转换为 HuggingFace 中常用的 .bin 格式文件,这就代表着文件成功被转化为 HuggingFace 格式了。

此时,hf 文件夹即为我们平时所理解的所谓 “LoRA 模型文件”。

可以简单理解:LoRA 模型文件 = Adapter。

步骤 4. 模型合并
对于 LoRA 或者 QLoRA 微调出来的模型其实并不是一个完整的模型,而是一个额外的层(Adapter),训练完的这个层最终还是要与原模型进行合并才能被正常的使用。

对于全量微调的模型(full)其实是不需要进行整合这一步的,因为全量微调修改的是原模型的权重而非微调一个新的 Adapter,因此是不需要进行模型整合的。

在 XTuner 中提供了一键合并的命令 xtuner convert merge,在使用前我们需要准备好三个路径,包括原模型的路径、训练好的 Adapter 层的(模型格式转换后的)路径以及最终保存的路径。

xtuner convert merge 命令用于合并模型。该命令需要三个参数:LLM 表示原模型路径,ADAPTER 表示 Adapter 层的路径, SAVE_PATH 表示合并后的模型最终的保存路径。

参数名解释
–max-shard-size {GB}代表每个权重文件最大的大小(默认为2GB)
–device {device_name}}这里指的就是device的名称,可选择的有cuda、cpu和auto,默认为cuda即使用gpu进行运算
–is-clip这个参数主要用于确定模型是不是CLIP模型,假如是的话就要加上,不是就不需要添加

在模型合并完成后,我们就可以看到最终的模型和原模型文件夹非常相似,包括了分词器、权重文件、配置信息等等。

3.4 模型 WebUI 对话

微调完成后,我们可以再次运行 xtuner_streamlit_demo.py 脚本来观察微调后的对话效果,不过在运行之前,我们需要将脚本中的模型路径修改为微调后的模型的路径。

cd ~/Tutorial/tools/L1_XTuner_code

直接修改脚本文件第18行

  • model_name_or_path = “Shanghai_AI_Laboratory/internlm2_5-7b-chat”
  • model_name_or_path = “/root/finetune/work_dirs/assistTuner/merged”

然后,我们可以直接启动应用。

conda activate xtuner-env

streamlit run /root/Tutorial/tools/L1_XTuner_code/xtuner_streamlit_demo.py

运行后,确保端口映射正常,如果映射已断开则需要重新做一次端口映射。

ssh -CNg -L 8501:127.0.0.1:8501 用户名@你的服务器域名或者IP -p SSH端口号

最后,通过浏览器访问:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/927846.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C#学写了一个程序记录日志的方法(Log类)

1.错误和警告信息单独生产文本进行记录&#xff1b; 2.日志到一定内存阈值可以打包压缩&#xff0c;单独存储起来&#xff0c;修改字段MaxLogFileSizeForCompress的值即可&#xff1b; 3.Log类调用举例&#xff1a;Log.Txt(JB.信息,“日志记录内容”,"通道1"); usi…

【前端】特殊案例分析深入理解 JavaScript 中的词法作用域

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: 前端 文章目录 &#x1f4af;前言&#x1f4af;案例代码&#x1f4af;词法作用域&#xff08;Lexical Scope&#xff09;与静态作用域什么是词法作用域&#xff1f;代码执行的详细分析 &#x1f4af;函数定义与调用的…

【Docker】Docker配置远程访问

配置Docker的远程访问&#xff0c;你需要按照以下步骤进行操作&#xff1a; 1. 在Docker宿主机上配置Docker守护进程监听TCP端口 Docker守护进程默认只监听UNIX套接字&#xff0c;要实现远程访问&#xff0c;需要修改配置以监听TCP端口。 ‌方法一&#xff1a;修改Docker服务…

贪心算法题

0简介 0.1什么是贪心算法 贪心算法是用贪婪(鼠目寸光)的角度&#xff0c;找到解决问题的最优解 贪心策略&#xff1a;(从局部最优 --> 整体最优) 1把解决问题的过程分为若干步&#xff1b; 2解决每一个问题时&#xff0c;都选择当前“看上去”最优的解法&#xff1b; 3“…

【HTTP】HTTP协议

一个Web Server就是个服务器软件&#xff08;程序&#xff09;&#xff0c;或者是运行这个服务器软件的硬件&#xff08;计算机&#xff09;&#xff0c;其主要功能是通过HTTP协议与客户端进行通信&#xff0c;来接收&#xff0c;存储&#xff0c;处理来自客户端的HTTP请求&…

分布式存储方式的地理信息数据仓库建立设计方案

背景介绍 随着地理信息技术的发展,GIS系统中的数据规模越来越庞大,传统集中式存储方式在处理高并发查询和大规模空间分析时面临瓶颈。分布式存储通过数据分片、并行计算等技术,为地理信息数据管理提供了新的解决方案。适用场景: 遥感影像存储与分析 城市交通数据管理(如G…

深度学习案例:ResNet50模型+SE-Net

本文为为&#x1f517;365天深度学习训练营内部文章 原作者&#xff1a;K同学啊 一 回顾ResNet模型 ResNet&#xff0c;即残差网络&#xff0c;是由微软研究院的Kaiming He及其合作者于2015年提出的一种深度卷积神经网络架构。该网络架构的核心创新在于引入了“残差连接”&…

droppath

DropPath 是一种用于正则化深度学习模型的技术&#xff0c;它在训练过程中随机丢弃路径&#xff08;或者说随机让某些部分的输出变为零&#xff09;&#xff0c;从而增强模型的鲁棒性和泛化能力。 代码解释&#xff1a; import torch import torch.nn as nn # 定义 DropPath…

KAN-Transfomer——基于新型神经网络KAN的时间序列预测

1.数据集介绍 ETT(电变压器温度)&#xff1a;由两个小时级数据集&#xff08;ETTh&#xff09;和两个 15 分钟级数据集&#xff08;ETTm&#xff09;组成。它们中的每一个都包含 2016 年 7 月至 2018 年 7 月的七种石油和电力变压器的负载特征。 traffic(交通) &#xff1a;描…

03-12、SpringCloud Alibaba第十二章,升级篇,服务注册与配置中心Nacos

SpringCloud Alibaba第十二章&#xff0c;升级篇&#xff0c;服务注册与配置中心Nacos 一、为什么SpringCloud Alibaba 1、为什么 有了spring cloud这个微服务的框架&#xff0c;为什么又要使用spring cloud alibaba这个框架了&#xff1f;最重要的原因在于spring cloud中的…

算法之旅:LeetCode 拓扑排序由简入繁完全攻略

前言 欢迎来到我的算法探索博客&#xff0c;在这里&#xff0c;我将通过解析精选的LeetCode题目&#xff0c;与您分享深刻的解题思路、多元化的解决方案以及宝贵的实战经验&#xff0c;旨在帮助每一位读者提升编程技能&#xff0c;领略算法之美。 &#x1f449;更多高频有趣Lee…

MATLAB 离散点构建凸包,计算面积周长(88)

MATLAB 离散点构建凸包,计算面积周长(88) 一、算法介绍二、算法实现1.代码2.总结这是缘,亦是命中最美的相见!!! 一、算法介绍 给定一堆离散点云,构建二维凸包,并计算凸包的面积和周长。 凸包是由顺序顶点构成的,因此凸包也可以当作多边形,则例的面积和周长计算方法…

Matlab Simulink HDL Coder开发流程(一)— 创建HDL兼容的Simulink模型

创建HDL兼容的Simulink模型 一、使用Balnk DUT模板二、从HDL Coder库中选择模块三、为DUT开发算法/功能四、为设计创建Testbench五、仿真验证设计功能六、Simulink模型生成HDL代码 这个例子说明了如何创建一个用于生成HDL代码的Simulink模型。要创建兼容HDL代码生成的MATLAB算法…

【智商检测——DP】

题目 代码 #include <bits/stdc.h> using namespace std; const int N 1e510, M 110; int f[N][M]; int main() {int n, k;cin >> n >> k;for(int i 1; i < n; i){int x;cin >> x;f[i][0] __gcd(f[i-1][0], x);for(int j 1; j < min(i, k)…

神经网络入门实战:(九)分类问题 → 神经网络模型搭建模版和训练四步曲

(一) 神经网络模型搭建官方文档 每一层基本都有权重和偏置&#xff0c;可以仔细看官方文档。 pytorch 官网的库&#xff1a;torch.nn — PyTorch 2.5 documentation Containers库&#xff1a;用来搭建神经网络框架&#xff08;包含所有的神经网络的框架&#xff09;&#xff1b…

不同云计算网络安全等级

导读云计算的本质是服务&#xff0c;如果不能将计算资源规模化/大范围的进行共享&#xff0c;如果不能真正以服务的形式提供&#xff0c;就根本算不上云计算。 等级保护定级流程 定级是开展网络安全等级保护工作的 “基本出发点”&#xff0c;虚拟化技术使得传统的网络边界变…

langchain实现基于sql的问答

1. 数据准备 import requestsurl "https://storage.googleapis.com/benchmarks-artifacts/chinook/Chinook.db"response requests.get(url)if response.status_code 200:# Open a local file in binary write modewith open("Chinook.db", "wb&qu…

flink学习(14)—— 双流join

概述 Join:内连接 CoGroup&#xff1a;内连接&#xff0c;左连接&#xff0c;右连接 Interval Join&#xff1a;点对面 Join 1、Join 将有相同 Key 并且位于同一窗口中的两条流的元素进行关联。 2、Join 可以支持处理时间&#xff08;processing time&#xff09;和事件时…

深入学习指针(5)!!!!!!!!!!!!!!!

文章目录 1.回调函数是什么&#xff1f;2.qsort使用举例2.1使用qsort函数排序整形数据2.2使用sqort排序结构数据 3.qsort函数的模拟实现 1.回调函数是什么&#xff1f; 回调函数就是⼀个通过函数指针调⽤的函数。 如果你把函数的指针&#xff08;地址&#xff09;作为参数传递…

CEF127 编译指南 Linux篇 - 构建CEF Client(七)

1. 引言 在完成 CEF127 的编译工作后&#xff0c;我们需要了解如何正确运行编译后的程序。本文将详细介绍如何使用 CMake 构建示例程序&#xff0c;并成功运行 CEF 客户端。通过本文的指导&#xff0c;您将能够在 Linux 环境下顺利运行 CEF 应用程序。 2. 准备工作 2.1 确认…