LeetCode 周赛上分之旅 #42 当 LeetCode 考树上倍增,出题的趋势在变化吗

⭐️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。

学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起体会上分之旅。

本文是 LeetCode 上分之旅系列的第 42 篇文章,往期回顾请移步到文章末尾~

周赛 360

T1. 距离原点最远的点(Easy)

  • 标签:模拟

T2. 找出美丽数组的最小和(Medium)

  • 标签:散列表、贪心、数学

T3. 使子序列的和等于目标的最少操作次数(Hard)

  • 标签:位运算、散列表、排序

T4. 在传球游戏中最大化函数值(Hard)

  • 标签:树、倍增、动态规划、内向基环树


T1. 距离原点最远的点(Easy)

https://leetcode.cn/problems/furthest-point-from-origin/

题解(模拟)

根据题意 “_” 既可以作为 “L” 也可以作为 “R”。容易想到,为了使得终点距离原点更远,当所有 “_” 仅作为 “L” 或 “R” 对结果的贡献是最优的,此时问题的结果就取决于 “L” 和 “R” 的差绝对值。

class Solution {
    fun furthestDistanceFromOrigin(moves: String): Int {
        return moves.count{ it == '_' } + abs(moves.count{ it == 'L' } - moves.count{ it == 'R' })
    }
}

一次遍历:

class Solution {
    fun furthestDistanceFromOrigin(moves: String): Int {
        var cntL = 0
        var cntR = 0
        for (e in moves) {
            when (e) {
                'L' -> {
                    cntL ++
                    cntR --
                }
                'R' -> {
                    cntL --
                    cntR ++
                }
                else -> {
                    cntL ++
                    cntR ++
                }
            }
        }
        return max(abs(cntL), abs(cntR))
    }
}

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n) 线性遍历;
  • 空间复杂度: O ( 1 ) O(1) O(1) 仅使用常量级别空间。

T2. 找出美丽数组的最小和(Medium)

https://leetcode.cn/problems/find-the-minimum-possible-sum-of-a-beautiful-array/

这道题与上周周赛 359 T2 2829. k-avoiding 数组的最小总和 相比,除了数据范围之外是完全相同的,有点离谱。

题解一(散列表 + 贪心)

1 1 1 开始从小到大枚举,如果当前元素 c u r cur cur 与已选列表不冲突,则加入结果中。为了验证是否冲突,我们使用散列表在 O ( 1 ) O(1) O(1) 时间复杂度判断。

class Solution {
    fun minimumPossibleSum(n: Int, k: Int): Long {
        val set = HashSet<Int>()
        var sum = 0L
        var cur = 1
        repeat(n) {
            while (!set.isEmpty() && set.contains(k - cur)) cur++
            sum += cur
            set.add(cur)
            cur++
        }
        return sum
    }
}

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n) 线性遍历;
  • 空间复杂度: O ( n ) O(n) O(n) 散列表空间。

题解二(数学)

这道题还可以继续挖掘数学规律,我们发现当我们从 1 1 1 开始从小到大枚举时,每选择一个数的同时必然会使得另一个数 k − x k - x kx 不可选。例如:

  • 选择 1 1 1,则 k − 1 k - 1 k1 不可选;
  • 选择 2 2 2,则 k − 2 k - 2 k2 不可选;
  • 选择 k / 2 k / 2 k/2,则 k − k / 2 k - k / 2 kk/2 不可选。

可以发现,最终选择的元素被分为两部分:

  • 小于 k k k 的部分:选择所有和为 k k k 的配对中的较小值,即 1 、 2 、 3 … k / 2 1、2、3 … k / 2 123k/2
  • 大于等于 k k k 的部分:与其他任意正整数相加都不会等于 k k k,因此大于等于 k k k 的数必然可以选择,即 k 、 k + 1 、 k + 2 、 … 、 k + n − m − 1 k、k + 1、k + 2、…、k + n - m - 1 kk+1k+2k+nm1 共 n - m 个数。

我们令 m = m i n ( k / 2 , n ) m = min(k / 2, n) m=min(k/2,n),使用求和公式可以 O ( 1 ) O(1) O(1) 求出两部分的总和:

  • 小于 k 的部分: m ( m + 1 ) / 2 m(m + 1)/ 2 m(m+1)/2
  • 大于等于 k 的部分: ( n − m ) ∗ ( 2 ∗ k + n − m − 1 ) / 2 (n - m) * (2*k + n - m - 1) / 2 (nm)(2k+nm1)/2
class Solution {
    fun minimumPossibleSum(n: Int, k: Int): Long {
        val m = 1L * Math.min(n, k / 2)
        return m * (m + 1) / 2 + (n - m) * (2 * k + n - m - 1) / 2
    }
}

复杂度分析:

  • 时间复杂度: O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( 1 ) O(1) O(1)

T3. 使子序列的和等于目标的最少操作次数(Hard)

https://leetcode.cn/problems/minimum-operations-to-form-subsequence-with-target-sum/

这道题的考点不复杂,难点在模拟问题挺考验编码功底的。

问题分析

  • 关键信息: n u m s nums nums 数组中所有元素都是 2 2 2 的幂,元素顺序对结果没有影响;
  • 问题是否有解: 考虑到所有数最终都能拆分成 1 1 1,那么只要 n u m s nums nums 数组的和大于等于 t a r g e t target target 就一定有解;
# 二进制位
nums:   _ _ _ 1 _ _ _ _
target: _ _ _ _ _ 1 _ _
  • 子问题: 问题是否有解的判断不仅适用于原问题,对于仅考虑二进制位最低位 [ 0 ] [0] [0] [ k ] [k] [k] 的子问题亦是如此。

以示例 1 nums = [1,2,8], target = 7 与示例 2 nums = [1,32,1,2], target = 12 为例,我们将统计 n u m s nums nums 中不同 2 2 2 的幂的出现次数:

# 二进制位
nums:   _ _ _ _ 1 _ 1 1
target: _ _ _ _ _ 1 1 1

# 二进制位
nums:   _ _ 1 _ _ _ 1 2 # 1 出现 2 次
target: _ _ _ _ 1 1 _ _

那么当我们从右向左枚举二进制位 k k k 时,如果「 n u m s nums nums 中小于等于 2 k 2^k 2k 的元素和」 ≥ ≥ t a r g e t target target 中低于等于 k k k 位的值」,那么对于仅考虑 [ 0 , k ] [0, k] [0,k] 位上的子问题是有解的。否则,我们需要找到 n u m s nums nums 中最近大于 2 k 2^k 2k 的最近数组做拆分:

# 只考虑低 2 位,可以构造
nums:   _ _ _ _ 1 _ | 1 1
target: _ _ _ _ _ 1 | 1 1

# 只考虑低 3 位,无法构造,需要找到最近的 “1” 做拆分
nums:   _ _ _ _ 1 | _ 1 1
target: _ _ _ _ _ | 1 1 1

# 只考虑低 3 位,无法构造,需要找到最近的 “1” 做拆分
nums:   _ _ 1 _ _ | _ 1 2
target: _ _ _ _ 1 | 1 _ _

# 只考虑低 6 位,可以构造
nums:   _ _ | 1 _ _ _ 1 2
target: _ _ | _ _ 1 1 _ _

组合以上技巧:

写法一(数组模拟)

思路参考灵神的题解。

  • 首先,我们使用长为 32 32 32 的数组,计算出 n u m s nums nums 数组中每个 2 2 2 的幂的出现次数;
  • 随后,我们从低位到高位枚举二进制位 i i i,在每轮迭代中将 n u m s nums nums 数组中的 2 i 2^i 2i 元素累加到 s u m sum sum 中,此举相当于在求「低 i i i 位的子问题」可以构造的最大值;
  • 最后,我们比较 s u m sum sum 是否大于等于 t a r g e t target target(只考虑低 i i i 位),此举相当于在判断「低 i i i 位的子问题」是否可构造。如果不可构造,我们尝试寻找最近的 2 j 2^j 2j 做拆分;
  • 另外,有一个优化点:当我们拆分将 2 j 2^j 2j 拆分到 2 i ( j > i ) 2^i (j > i) 2i(j>i) 时并不是直接丢弃 2 j 2^j 2j,而是会留下 2 j − 1 、 2 j − 2 … 2 i 2^{j-1}、2^{j-2}… 2^i 2j12j22i 等一系列数,可以直接跳到第 j j j 位继续枚举。

注意一个容易 WA 的地方,在开头特判的地方,由于元素和可能会溢出 I n t Int Int 上界,所以我们需要转换为在 L o n g Long Long 上的求和。

class Solution {
    fun minOperations(nums: List<Int>, target: Int): Int {
        if (nums.fold(0L) { it, acc -> it + acc } < target) return -1
        // if (nums.sum() < target) return -1 // 溢出
        // 计数
        val cnts = IntArray(32)
        for (num in nums) {
            var i = 0
            var x = num
            while (x > 1) {
                x = x shr 1
                i += 1
            }
            cnts[i]++
        }
        var ret = 0
        var i = 0
        var sum = 0L
        while(sum < target) {
            // 累加低位的 nums
            sum += (cnts[i]) shl i
            // println("i=$i, sum=$sum")
            // 低 i 位掩码
            val mask = (1 shl (i + 1)) - 1
            // 构造子问题
            if (sum < target and mask) {
                var j = i + 1
                while (cnts[j] == 0) { // 基于开头的特判,此处一定有解
                    j++
                }
                // 拆分
                ret += j - i
                i = j
            } else {
                i += 1
            }
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度: O ( n ⋅ U + U O(n·U + U O(nU+U) 其中 n n n n u m s nums nums 数组的长度, U U U 为整型大小 32 32 32
  • 空间复杂度: O ( U ) O(U) O(U) 数组空间。

写法二(散列表模拟)

在计数的部分,我们可以使用散列表模拟,复杂度相同。

class Solution {
    fun minOperations(nums: List<Int>, target: Int): Int {
        if (nums.fold(0L) { it, acc -> it + acc } < target) return -1
        // if (nums.sum() < target) return -1 // 溢出
        // 计数
        val cnts = HashMap<Int, Int>()
        for (num in nums) {
            cnts[num] = cnts.getOrDefault(num, 0) + 1
        }
        var ret = 0
        var i = 0
        var sum = 0L
        while(sum < target) {
            // 累加低位的 nums
            sum += (cnts[1 shl i] ?: 0) shl i
            // println("i=$i, sum=$sum")
            // 低 i 位掩码
            val mask = (1 shl (i + 1)) - 1
            // 构造子问题
            if (sum < target and mask) {
                var j = i + 1
                while (!cnts.containsKey(1 shl j)) { // 基于开头的特判,此处一定有解
                    j++
                }
                // 拆分
                ret += j - i
                i = j
            } else {
                i += 1
            }
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度: O ( n + U ) O(n + U) O(n+U) 其中 n n n n u m s nums nums 数组的长度, U U U 为整型大小 32 32 32
  • 空间复杂度: O ( U ) O(U) O(U) 散列表空间。

写法三(逆向思维)

思路参考雪景式的题解,前两种写法是在从小到大枚举「选哪个」,我们也可以枚举「不选哪个」。

  • 思考 1: 在原问题有解 ( s u m > t a r g e t ) (sum > target) sum>target的情况下,如果从 s u m sum sum 中剔除最大的元素 x x x 后,依然满足剩余的元素和 s u m ’ > t a r g e t sum’ > target sum>target,那么直接将 x x x 去掉,这是因为一定存在比 x x x 操作次数更小的方案能够构造 t a r g e t target target(元素越大拆分次数越多)。
  • 思考 2: 如果从 s u m sum sum 中剔除最大的元素 x x x 后不能构造,说明 x x x 是一定要选择或者拆分,此时考虑 x x x t a r g e t target target 的影响:
    • 如果 x > t a r g e t x > target x>target,那么 x x x 需要先拆分
    • 如果 x ≤ t a r g e t x ≤ target xtarget,那么 x x x 可以被选择并抵消 t a r g e t target target
class Solution {
    fun minOperations(nums: MutableList<Int>, target: Int): Int {
        var sum = nums.fold(0L) { it, acc -> it + acc }
        if (sum < target) return -1
        // 排序
        nums.sortDescending()
        // 从大到小枚举
        var ret = 0
        var left = target
        while (sum > left) {
            val x = nums.removeFirst()
            if (sum - x >= left){
                sum -= x
            } else if (x <= left) {
                sum -= x
                left -= x
            } else {
                ret += 1
                nums.add(0, x / 2)
                nums.add(0, x / 2)
            }
            // println("ret=$ret, sum=$sum, left=$left, x=$x,  nums=${nums.joinToString()}")
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度: O ( n l g n + n + U ) O(nlgn + n + U) O(nlgn+n+U) 瓶颈在排序,枚举阶段每个元素最多访问 1 1 1 次,拆分次数最多为 U U U
  • 空间复杂度: O ( l g n ) O(lgn) O(lgn) 排序递归栈空间。

T4. 在传球游戏中最大化函数值(Hard)

https://leetcode.cn/problems/maximize-value-of-function-in-a-ball-passing-game/

题解(树上倍增)

从近期周赛的趋势看,出题人似乎有意想把 LeetCode 往偏竞赛的题目引导。

这道题如果知道树上倍增算法,其实比第三题还简单一些。

  • 问题目标: 找到最佳方案,使得从起点开始传球 k k k 次的路径和最大化;
  • 暴力: 对于暴力的做法,我们可以枚举以每名玩家为起点的方案,并模拟传球过程求出最佳方案。但是这道题的步长 k k k 的上界非常大 1 0 10 10^{10} 1010,如果逐级向上传球,那么单次查询的时间复杂度是 O ( k ) O(k) O(k)。现在,需要思考如何优化模拟 k k k 次传球的效率;
  • 倍增思想: 借鉴 1483. 树节点的第 K 个祖先 的解法,我们可以利用倍增算法将线性的操作施加指数级别的贡献:
    • 如果可以预处理出每个玩家的多级后驱玩家,那么在查询时可以加速跳转;
    • 由于每个数都可以进行二进制拆分为多个 2 2 2 的幂的和,如果预处理出第 2 0 、 2 1 、 2 2 、 2 3 、 . . . 、 2 i 2^0、2^1、2^2、2^3、...、2^i 20212223...2i 个后驱玩家,那么求解第 k k k 次传球时可以转化为多次 2 i 2^i 2i 个后驱玩家跳转操作,大幅减少操作次数。
class Solution {
    fun getMaxFunctionValue(receiver: List<Int>, k: Long): Long {
        val n = receiver.size
        val m = 64 - k.countLeadingZeroBits()
        // 预处理
        // dp[i][j] 表示 i 传球 2^j 次后的节点
        val dp = Array(n) { IntArray(m) }
        // dp[i][j] 表示 i 传球 2^j 次的路径和
        val sum = Array(n) { LongArray(m) }
        for (i in 0 until n) {
            dp[i][0] = receiver[i]
            sum[i][0] = receiver[i].toLong()
        }
        for (j in 1 until m) {
            for (i in 0 until n) { // 这道题没有根节点,不需要考虑 child == -1 的情况
                val child = dp[i][j - 1]
                // 从 i 条 2^{j-1} 次,再跳 2^{j-1}
                dp[i][j] = dp[child][j - 1]
                sum[i][j] = sum[i][j - 1] + sum[child][j - 1]
            }
        }
        // 枚举方案
        var ret = 0L
        for (node in 0 until n) {
            var i = node
            var x = k
            var s = node.toLong() // 起点的贡献
            while (x != 0L) {
                val j = x.countTrailingZeroBits()
                s += sum[i][j]
                i = dp[i][j]
                x = x and (x - 1)
            }
            ret = max(ret, s)
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度:预处理时间为 O ( n l g k ) O(nlgk) O(nlgk),枚举时间为 O ( n l g k ) O(nlgk) O(nlgk),其中 n n n r e c e i v e r s receivers receivers 数组的长度;
  • 空间复杂度:预处理空间 O ( n l g k ) O(nlgk) O(nlgk)

另外,这道题还有基于「内向基环树」的 O ( n ) O(n) O(n) 解法。


推荐阅读

LeetCode 上分之旅系列往期回顾:

  • LeetCode 单周赛第 359 场 · 结合离散化的线性 DP 问题
  • LeetCode 单周赛第 358 场 · 结合中心扩展的单调栈贪心问题
  • LeetCode 双周赛第 111 场 · 按部就班地解决动态规划问题
  • LeetCode 双周赛第 110 场 · 结合排序不等式的动态规划

⭐️ 永远相信美好的事情即将发生,欢迎加入小彭的 Android 交流社群~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/92737.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DevOps系列文章 之 Python基础

字符串 定义字符串 1.python中字符串被定义为引号之间的字符集合 2.python支持使用成对的单引号或双引号 3.无论单引号&#xff0c;还是双引号&#xff0c;表示的意义相同 4.python还支持三引号&#xff08;三个连续的单引号或者双引号&#xff09;&#xff0c;可以用来包含特…

【Linux】深入理解文件操作

文章目录 初次谈论文件重温C语言文件操作系统文件操作接口openwriteread 再次谈论文件文件描述符文件描述符的分配规则 重定向什么是重定向重定向的本质系统调用接口实现重定向<、>、>> 初次谈论文件 开始之前先谈论一下关于文件的一些共识性问题。 一个文件可以…

http协议与apache

http概念&#xff1a; 互联网&#xff1a;是网络的网络&#xff0c;是所有类型网络的母集 因特网&#xff1a;世界上最大的互联网网络。即因特网概念从属于互联网概念 万维网&#xff1a;万维网并非某种特殊的计算机网络&#xff0c;是一个大规模的、联机式的信息贮藏库&…

SpringCloud Alibaba实战和源码(7)Skywalking

什么是SkyWalking Skywalking是由国内开源爱好者吴晟开源并提交到Apache孵化器的产品&#xff0c;它同时吸收了Zipkin /Pinpoint /CAT 的设计思路。特点是&#xff1a;支持多种插件&#xff0c;UI功能较强&#xff0c;支持非侵入式埋点。目前使用厂商最多&#xff0c;版本更新较…

keepalived+lvs+nginx高并发集群

keepalivedlvsnginx高并发集群 简介&#xff1a; keepalivedlvsnginx高并发集群&#xff0c;是通过LVS将请求流量均匀分发给nginx集群&#xff0c;而当单机nginx出现状态异常或宕机时&#xff0c;keepalived会主动切换并将不健康nginx下线&#xff0c;维持集群稳定高可用 1.L…

【Java】Java基础

环境准备 安装JDK和JRE 下载JDK&#xff0c;可以在官网Java Downloads | Oracle 中国下载&#xff0c;但是这里需要注册才能够下载。在Index of java-local/jdk (huaweicloud.com)也可以下载到&#xff0c;但是版本比较老&#xff0c;关系不大&#xff0c;直接下载&#xff0…

node-red - 读写操作redis

node-red - 读写操作redis 一、前期准备二、node-red安装redis节点三、node-red操作使用redis节点3.1 redis-out节点 - 存储数据到redis3.2 redis-in节点 - 查询redis数据 附录附录1&#xff1a;redis -out节点示例代码附录2&#xff1a;redis -in节点示例代码 一、前期准备 安…

On-Manifold Optimization: Local Parameterization

Overview Manifold Space vs Tangent Space Jacobian w.r.t Error State Jacobian w.r.t Error State vs True State According 1 2.4, The idea is that for a x ∈ N x \in N x∈N the function g ( δ ) : f ( x ⊞ δ ) g(\delta) : f (x \boxplus \delta) g(δ):f(x…

《C和指针》笔记10:作用域

结合上面的例子讲解C语言的作用域。 1. 代码块作用域 (block scope) 位于一对花括号之间的所有语句称为一个代码块。任何在代码块的开始位置声明的标识符都具有代码块作用域 (block scope)&#xff0c;表示它们可以被这个代码块中的所有语句访问。上图中标识为6、7、9、10的变…

视频云存储/安防监控视频智能分析网关V3:占道经营功能详解

违规占道经营者经常会在人流量大、车辆集中的道路两旁摆摊&#xff0c;导致公路交通堵塞&#xff0c;给居民出行的造成不便&#xff0c;而且违规占路密集的地方都是交通事故频频发生的区域。 TSINGSEE青犀视频云存储/安防监控视频/AI智能分析网关V3运用视频AI智能分析技术&…

如何延长周末体验感

美好的周末永远都是从周五开始 为了享受周末的美好时光一定要在周五下班前把工作中应该处理的事情处理好&#xff0c;避免突发事件影响后续的计划。 此外过周五晚上开始做让自己感到开心的事情&#xff0c;以此让自己感觉到周末已经开始了。包括单不限于 享受美食 周五晚上是一…

Java“牵手”天猫商品sku信息API接口数据,天猫API接口申请指南

天猫平台商品sku属性信息接口是开放平台提供的一种API接口&#xff0c;通过调用API接口&#xff0c;开发者可以获取天猫商品的标题、价格、库存、月销量、总销量、库存、详情描述、图片等详细信息 。 获取商品销量接口API是一种用于获取电商平台上商品sku属性数据的接口&#…

Linux系统:CentOS 7 CA证书服务器部署

目录 一、理论 1.CA认证中心 2.CA证书服务器部署 二、实验 1. CA证书服务器部署 一、理论 1.CA认证中心 &#xff08;1&#xff09;概念 CA &#xff1a;CertificateAuthority的缩写&#xff0c;通常翻译成认证权威或者认证中心&#xff0c;主要用途是为用户发放数字证…

Java线程 - 详解(1)

一&#xff0c;创建线程 方法一&#xff1a;继承Thread类 class MyThread extends Thread{Overridepublic void run() {System.out.println("线程1");} }public class Test {public static void main(String[] args) {MyThread myThread new MyThread();myThread.…

ChatGPT 与前端技术实现制作大屏可视化

像这样的综合案例实分析,我们可以提供案例,维度与指标数据,让ChatGPT与AIGC 帮写出完整代码,并进行一个2行2列的布局设置。 数据与指令如下: 商品名称 销量 目标 完成率 可乐 479 600 79.83% 雪碧 324 600 54.00% 红茶 379 600 63.…

LLMs NLP模型评估Model evaluation ROUGE and BLEU SCORE

在整个课程中&#xff0c;你看到过类似模型在这个任务上表现良好&#xff0c;或者这个微调模型在性能上相对于基础模型有显著提升等陈述。 这些陈述是什么意思&#xff1f;如何形式化你的微调模型在你起初的预训练模型上的性能改进&#xff1f;让我们探讨一些由大型语言模型开…

httpd协议与apache

1.http 相关概念 HTTP是处于应用层的协议&#xff0c;使用TCP传输层协议进行可靠的传送。因此&#xff0c;需要特别提醒的是&#xff0c;万维网是基于因特网的一种广泛因特网应用系统&#xff0c;且万维网采用的是HTTP&#xff08;80/TCP&#xff09;和 HTTPS&#xff08;443/…

哔哩哔哩 B站 bilibili 视频视频音效调节 清澈人声

视频音效调节方式&#xff1a;直接视频播放内容界面内鼠标右键点击视频音效调节 注意&#xff1a;需要使用的是谷歌浏览器&#xff0c;我的火狐浏览器试了不行&#xff0c;都没选项&#xff0c;火狐的出来的界面是这样的&#xff1a; 目录 具体操作如下&#xff1a; 1、谷歌…

第八章,帖子列表

8.1添加帖子列表 <script> import { mapState } from vuex . . . </script> computed: {...mapState([auth,user,articles]) }, <Message :sh

mysql sql 执行流程

监控查询缓存的命中率 show status like ‘%qcache%’; mysql 缓存机制&#xff0c;以及 8.0 为啥取消 select sql_NO_Cache * from 表 where xxx; # 不使用缓存