乘积求导法则、除法求导法则和链式求导法则

乘积求导法则、除法求导法则和链式求导法则

  • 1. Constant multiples of functions (函数的常数倍)
  • 2. Sums and differences of functions (函数和与函数差)
  • 3. Products of functions via the product rule (通过乘积法则求积函数的导数)
  • 4. Quotients of functions via the quotient rule (通过商法则求商函数的导数)
  • 5. Composition of functions via the chain rule (通过链式求导法则求复合函数的导数)
  • 6. A nasty example (难以处理的例子)
  • 7. Justification of the product rule and the chain rule (乘积法则和链式求导法则的理由)
  • References

1. Constant multiples of functions (函数的常数倍)

It’s easy to deal with a constant multiple of a function: you just multiply by the constant after you differentiate.
函数的常数倍进行求导,只需在函数求导后,用常数乘以该函数的导数。

We know the derivative of x 2 x^2 x2 is 2 x 2x 2x; so the derivative of 7 x 2 7x^2 7x2 is 7 times 2 x 2x 2x, or 14 x 14x 14x.

d d x ( x 2 ) = 2 x \begin{aligned} \frac{\text{d}}{\text{d}x}(x^2) = 2x \end{aligned} dxd(x2)=2x

d d x ( 7 x 2 ) = 7 × d d x ( x 2 ) = 7 × 2 x = 14 x \begin{aligned} \frac{\text{d}}{\text{d}x}(7x^2) = 7 \times \frac{\text{d}}{\text{d}x}(x^2) = 7 \times 2x = 14x \end{aligned} dxd(7x2)=7×dxd(x2)=7×2x=14x

The derivative of − x 2 -x^2 x2 is − 2 x -2x 2x, since you can think of the minus out front as multiplication by -1.

d d x ( − x 2 ) = − 1 × d d x ( x 2 ) = − 1 × 2 x = − 2 x \begin{aligned} \frac{\text{d}}{\text{d}x}(-x^2) = -1 \times \frac{\text{d}}{\text{d}x}(x^2) = -1 \times 2x = -2x \end{aligned} dxd(x2)=1×dxd(x2)=1×2x=2x

Similarly, to find the derivative of 13 x 4 13x^4 13x4, multiply 13 by 4, giving a coefficient of 52, and then knock the power down by one to get 52 x 3 52x^3 52x3.

d d x ( 13 x 4 ) = 13 × d d x ( x 4 ) = 13 × 4 x 3 = 52 x 3 \begin{aligned} \frac{\text{d}}{\text{d}x}(13x^4) = 13 \times \frac{\text{d}}{\text{d}x}(x^4) = 13 \times 4x^3 = 52x^3 \end{aligned} dxd(13x4)=13×dxd(x4)=13×4x3=52x3

2. Sums and differences of functions (函数和与函数差)

It’s even easier to differentiate sums and differences of functions: just differentiate each piece and then add or subtract.
对函数和与函数差求导,只需对每一部分求导,然后再相加或相减。

d d x ( 3 x 5 − 2 x 2 + 7 x + 2 ) = d d x ( 3 x 5 − 2 x 2 + 7 x 1 / 2 + 2 ) = d d x ( 3 x 5 − 2 x 2 + 7 x − 1 / 2 + 2 ) = d d x ( 3 x 5 ) + d d x ( − 2 x 2 ) + d d x ( 7 x − 1 / 2 ) + d d x ( 2 ) = 3 × d d x ( x 5 ) − 2 × d d x ( x 2 ) + 7 × d d x ( x − 1 / 2 ) + d d x ( 2 ) = 3 × 5 x 4 − 2 × 2 x + 7 × ( − 1 / 2 ) x − 1 / 2 − 1 + 0 = 15 x 4 − 4 x − 7 2 x − 3 / 2 = 15 x 4 − 4 x − 7 2 1 x 3 / 2 = 15 x 4 − 4 x − 7 2 1 x 2 / 2 x 1 / 2 = 15 x 4 − 4 x − 7 2 1 x x \begin{aligned} \frac{\text{d}}{\text{d}x}(3x^5 - 2x^2 + \frac{7}{\sqrt{x}} + 2) &= \frac{\text{d}}{\text{d}x}(3x^5 - 2x^2 + \frac{7}{{x}^{1/2}} + 2) \\ &= \frac{\text{d}}{\text{d}x}(3x^5 - 2x^2 + 7{x}^{-1/2} + 2) \\ &= \frac{\text{d}}{\text{d}x}(3x^5) + \frac{\text{d}}{\text{d}x}(-2x^2) + \frac{\text{d}}{\text{d}x}(7{x}^{-1/2}) + \frac{\text{d}}{\text{d}x}(2) \\ &= 3 \times \frac{\text{d}}{\text{d}x}(x^5) - 2 \times \frac{\text{d}}{\text{d}x}(x^2) + 7 \times \frac{\text{d}}{\text{d}x}({x}^{-1/2}) + \frac{\text{d}}{\text{d}x}(2) \\ &= 3 \times 5x^4 - 2 \times 2x + 7 \times (-1/2){x}^{-1/2 - 1} + 0 \\ &= 15x^4 - 4x - \frac{7}{2}{x}^{-3/2} \\ &= 15x^4 - 4x - \frac{7}{2}\frac{1}{x^{3/2}} \\ &= 15x^4 - 4x - \frac{7}{2}\frac{1}{x^{2/2}x^{1/2}} \\ &= 15x^4 - 4x - \frac{7}{2}\frac{1}{x\sqrt{x}} \\ \end{aligned} dxd(3x52x2+x 7+2)=dxd(3x52x2+x1/27+2)=dxd(3x52x2+7x1/2+2)=dxd(3x5)+dxd(2x2)+dxd(7x1/2)+dxd(2)=3×dxd(x5)2×dxd(x2)+7×dxd(x1/2)+dxd(2)=3×5x42×2x+7×(1/2)x1/21+0=15x44x27x3/2=15x44x27x3/21=15x44x27x2/2x1/21=15x44x27xx 1

x 5 / 2 = x 4 / 2 x 1 / 2 = x 2 x 1 / 2 = x 2 x x 7 / 2 = x 6 / 2 x 1 / 2 = x 3 x 1 / 2 = x 3 x \begin{aligned} x^{5/2} = x^{4/2}x^{1/2} = x^{2}x^{1/2} = x^{2}\sqrt{x} \\ x^{7/2} = x^{6/2}x^{1/2} = x^{3}x^{1/2} = x^{3}\sqrt{x} \\ \end{aligned} x5/2=x4/2x1/2=x2x1/2=x2x x7/2=x6/2x1/2=x3x1/2=x3x

3. Products of functions via the product rule (通过乘积法则求积函数的导数)

  • 乘积法则 (版本 1)

在这里插入图片描述
Product rule (version 1): if h ( x ) = f ( x ) g ( x ) h(x) = f(x)g(x) h(x)=f(x)g(x), then h ′ ( x ) = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) h'(x) = f'(x)g(x) + f(x)g'(x) h(x)=f(x)g(x)+f(x)g(x).

That is, you take the derivative of f f f and multiply it by g g g (not the derivative of g g g). Then you also have to take the derivative of g g g and multiply it by f f f. Finally, add the two things together.

h ( x ) = f ( x ) g ( x ) = ( x 5 + 2 x − 1 ) ( 3 x 8 − 2 x 7 − x 4 − 3 x ) h(x) = f(x)g(x) = (x^{5} + 2x - 1)(3x^{8} - 2x^{7} - x^4 - 3x) h(x)=f(x)g(x)=(x5+2x1)(3x82x7x43x)
f ( x ) = x 5 + 2 x − 1 ,   f ′ ( x ) = 5 x 4 + 2 f(x) = x^{5} + 2x - 1, \ f'(x) = 5x^4 + 2 f(x)=x5+2x1, f(x)=5x4+2
g ( x ) = 3 x 8 − 2 x 7 − x 4 − 3 x ,   g ′ ( x ) = 24 x 7 − 14 x 6 − 4 x 3 − 3 g(x) = 3x^{8} - 2x^{7} - x^4 - 3x, \ g'(x) = 24x^7 - 14x^6 - 4x^3 - 3 g(x)=3x82x7x43x, g(x)=24x714x64x33

h ′ ( x ) = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) = ( 5 x 4 + 2 ) ( 3 x 8 − 2 x 7 − x 4 − 3 x ) + ( x 5 + 2 x − 1 ) ( 24 x 7 − 14 x 6 − 4 x 3 − 3 ) \begin{aligned} h'(x) &= f'(x)g(x) + f(x)g'(x) \\ &= (5x^4 + 2)(3x^{8} - 2x^{7} - x^4 - 3x) + (x^{5} + 2x - 1)(24x^7 - 14x^6 - 4x^3 - 3) \\ \end{aligned} h(x)=f(x)g(x)+f(x)g(x)=(5x4+2)(3x82x7x43x)+(x5+2x1)(24x714x64x33)

  • 乘积法则 (版本 2)

We can take the above form of the product rule and make some replacements: first, u u u replaces f ( x ) f(x) f(x), so that d u / d x \text{d}u/\text{d}x du/dx replaces f ′ ( x ) f'(x) f(x); we also do the same thing with v v v and g ( x ) g(x) g(x).

在这里插入图片描述
Product rule (version 2): if y = u v y = uv y=uv, then d y d x = d u d x v + u d v d x \frac{\text{d}y}{\text{d}x} = \frac{\text{d}u}{\text{d}x}v + u\frac{\text{d}v}{\text{d}x} dxdy=dxduv+udxdv.

y = u v = ( x 3 + 2 x ) ( 3 x + x + 1 ) y = uv = (x^3 + 2x)(3x + \sqrt{x} + 1) y=uv=(x3+2x)(3x+x +1)
u = x 3 + 2 x ,   d u d x = 3 x 2 + 2 u = x^3 + 2x, \ \frac{\text{d}u}{\text{d}x} = 3x^2 + 2 u=x3+2x, dxdu=3x2+2
v = 3 x + x + 1 ,   d v d x = 3 + 1 2 x − 1 / 2 = 3 + 1 2 x 1 / 2 = 3 + 1 2 x v = 3x + \sqrt{x} + 1, \ \frac{\text{d}v}{\text{d}x} = 3 + \frac{1}{2}x^{-1/2} = 3 + \frac{1}{2x^{1/2}} = 3 + \frac{1}{2 \sqrt{x}} v=3x+x +1, dxdv=3+21x1/2=3+2x1/21=3+2x 1

d y d x = d u d x v + u d v d x = ( 3 x 2 + 2 ) ( 3 x + x + 1 ) + ( x 3 + 2 x ) ( 3 + 1 2 x ) \begin{aligned} \frac{\text{d}y}{\text{d}x} &= \frac{\text{d}u}{\text{d}x}v + u\frac{\text{d}v}{\text{d}x} \\ &= (3x^2 + 2)(3x + \sqrt{x} + 1) + (x^3 + 2x)(3 + \frac{1}{2 \sqrt{x}}) \\ \end{aligned} dxdy=dxduv+udxdv=(3x2+2)(3x+x +1)+(x3+2x)(3+2x 1)

  • 乘积法则 (三个变量)

在这里插入图片描述
Product rule (three variables): if y = u v w y = uvw y=uvw, then d y d x = d u d x v w + u d v d x w + u v d w d x \frac{\text{d}y}{\text{d}x} = \frac{\text{d}u}{\text{d}x}vw + u\frac{\text{d}v}{\text{d}x}w + uv\frac{\text{d}w}{\text{d}x} dxdy=dxduvw+udxdvw+uvdxdw.

Just add up u v w uvw uvw three times, but put a d / d x \text{d}/\text{d}x d/dx in front of a different variable in each term. The same trick works for four or more variables, every variable gets differentiated once!
u v w uvw uvw 加三次,但对于每一项,要将 d / d x \text{d}/\text{d}x d/dx 放在不同的变量之前。同样的方法适用于四个或更多个变量,每一个变量都要进行一次微分运算。

y = u v w = ( x 2 + 1 ) ( x 2 + 3 x ) ( x 5 + 2 x 4 + 7 ) y = uvw = (x^2 + 1)(x^2 + 3x)(x^5 + 2x^4 + 7) y=uvw=(x2+1)(x2+3x)(x5+2x4+7)
u = x 2 + 1 ,   d u d x = 2 x u = x^2 + 1, \ \frac{\text{d}u}{\text{d}x} = 2x u=x2+1, dxdu=2x
v = x 2 + 3 x ,   d v d x = 2 x + 3 v = x^2 + 3x, \ \frac{\text{d}v}{\text{d}x} = 2x + 3 v=x2+3x, dxdv=2x+3
w = x 5 + 2 x 4 + 7 ,   d w d x = 5 x 4 + 8 x 3 w = x^5 + 2x^4 + 7, \ \frac{\text{d}w}{\text{d}x} = 5x^{4} + 8x^{3} w=x5+2x4+7, dxdw=5x4+8x3

d y d x = d u d x v w + u d v d x w + u v d w d x = ( 2 x ) ( x 2 + 3 x ) ( x 5 + 2 x 4 + 7 ) + ( x 2 + 1 ) ( 2 x + 3 ) ( x 5 + 2 x 4 + 7 ) + ( x 2 + 1 ) ( x 2 + 3 x ) ( 5 x 4 + 8 x 3 ) \begin{aligned} \frac{\text{d}y}{\text{d}x} &= \frac{\text{d}u}{\text{d}x}vw + u\frac{\text{d}v}{\text{d}x}w + uv\frac{\text{d}w}{\text{d}x} \\ &= (2x)(x^2 + 3x)(x^5 + 2x^4 + 7) + (x^2 + 1)(2x + 3)(x^5 + 2x^4 + 7) + (x^2 + 1)(x^2 + 3x)(5x^{4} + 8x^{3}) \\ \end{aligned} dxdy=dxduvw+udxdvw+uvdxdw=(2x)(x2+3x)(x5+2x4+7)+(x2+1)(2x+3)(x5+2x4+7)+(x2+1)(x2+3x)(5x4+8x3)

4. Quotients of functions via the quotient rule (通过商法则求商函数的导数)

  • 除法法则 (版本 1)

在这里插入图片描述
Quotient rule (version 1): if h ( x ) = f ( x ) g ( x ) h(x) = \frac{f(x)}{g(x)} h(x)=g(x)f(x), then h ′ ( x ) = f ′ ( x ) g ( x )   −   f ( x ) g ′ ( x ) ( g ( x ) ) 2 h'(x) = \frac{f'(x)g(x) \ - \ f(x)g'(x)}{(g(x))^2} h(x)=(g(x))2f(x)g(x)  f(x)g(x).

Notice that the numerator of the right-hand fraction is the same as the numerator in the product rule, except with a minus instead of a plus.
除了正号变成了负号外,等号右边分式的分子与乘积法则中的分子是一样的。

h ( x ) = f ( x ) / g ( x ) = 2 x 3 − 3 x + 1 x 5 − 8 x 3 + 2 h(x) = f(x)/g(x) = \frac{2x^{3} - 3x + 1}{x^{5} - 8x^{3} + 2} h(x)=f(x)/g(x)=x58x3+22x33x+1
f ( x ) = 2 x 3 − 3 x + 1 ,   f ′ ( x ) = 6 x 2 − 3 f(x) =2x^{3} - 3x + 1, \ f'(x) = 6x^2 - 3 f(x)=2x33x+1, f(x)=6x23
g ( x ) = x 5 − 8 x 3 + 2 ,   g ′ ( x ) = 5 x 4 − 24 x 2 g(x) = x^{5} - 8x^{3} + 2, \ g'(x) = 5x^4 - 24x^2 g(x)=x58x3+2, g(x)=5x424x2

h ′ ( x ) = f ′ ( x ) g ( x )   −   f ( x ) g ′ ( x ) ( g ( x ) ) 2 = ( 6 x 2 − 3 ) ( x 5 − 8 x 3 + 2 )   −   ( 2 x 3 − 3 x + 1 ) ( 5 x 4 − 24 x 2 ) ( x 5 − 8 x 3 + 2 ) 2 \begin{aligned} h'(x) &= \frac{f'(x)g(x) \ - \ f(x)g'(x)}{(g(x))^2} \\ &= \frac{(6x^2 - 3)(x^{5} - 8x^{3} + 2) \ - \ (2x^{3} - 3x + 1)(5x^4 - 24x^2)}{(x^{5} - 8x^{3} + 2)^2} \\ \end{aligned} h(x)=(g(x))2f(x)g(x)  f(x)g(x)=(x58x3+2)2(6x23)(x58x3+2)  (2x33x+1)(5x424x2)

  • 除法法则 (版本 2)

在这里插入图片描述
Quotient rule (version 2): if y = u v y = \frac{u}{v} y=vu, then d y d x = d u d x v   −   u d v d x v 2 \frac{\text{d}y}{\text{d}x} = \frac{\frac{\text{d}u}{\text{d}x}v \ - \ u\frac{\text{d}v}{\text{d}x}}{v^2} dxdy=v2dxduv  udxdv.

y = u / v = 3 x 2 + 1 2 x 8 − 7 y = u/v = \frac{3x^{2} + 1}{2x^{8} - 7} y=u/v=2x873x2+1
u = 3 x 2 + 1 ,   d u d x = 6 x u =3x^{2} + 1, \ \frac{\text{d}u}{\text{d}x} = 6x u=3x2+1, dxdu=6x
v = 2 x 8 − 7 ,   d v d x = 16 x 7 v = 2x^{8} - 7, \ \frac{\text{d}v}{\text{d}x} = 16x^{7} v=2x87, dxdv=16x7

d y d x = d u d x v   −   u d v d x v 2 = ( 6 x ) ( 2 x 8 − 7 )   −   ( 3 x 2 + 1 ) ( 16 x 7 ) ( 2 x 8 − 7 ) 2 \begin{aligned} \frac{\text{d}y}{\text{d}x} &= \frac{\frac{\text{d}u}{\text{d}x}v \ - \ u\frac{\text{d}v}{\text{d}x}}{v^2} \\ &= \frac{(6x)(2x^{8} - 7) \ - \ (3x^{2} + 1)(16x^{7})}{(2x^{8} - 7)^2} \\ \end{aligned} dxdy=v2dxduv  udxdv=(2x87)2(6x)(2x87)  (3x2+1)(16x7)

5. Composition of functions via the chain rule (通过链式求导法则求复合函数的导数)

  • 链式求导法则 (版本 1)

在这里插入图片描述
Chain rule (version 1): if h ( x ) h(x) h(x) = f ( g ( x ) ) f(g(x)) f(g(x)), then h ′ ( x ) = f ′ ( g ( x ) ) g ′ ( x ) h'(x) = f'(g(x))g'(x) h(x)=f(g(x))g(x).

f ( u ) = u 99 ,   f ′ ( u ) = 99 u 98 f(u) = u^{99}, \ f'(u) = 99u^{98} f(u)=u99, f(u)=99u98
g ( x ) = x 2 + 1 ,   g ′ ( x ) = 2 x g(x) = x^{2} + 1, \ g'(x) = 2x g(x)=x2+1, g(x)=2x
h ( x ) = f ( g ( x ) ) = f ( x 2 + 1 ) = ( x 2 + 1 ) 99 h(x) = f(g(x)) = f(x^{2} + 1) = (x^{2} + 1)^{99} h(x)=f(g(x))=f(x2+1)=(x2+1)99

h ′ ( x ) = f ′ ( g ( x ) ) g ′ ( x ) = 99 ( g ( x ) ) 98 ( 2 x ) = 99 ( x 2 + 1 ) 98 ( 2 x ) = 198 x ( x 2 + 1 ) 98 \begin{aligned} h'(x) &= f'(g(x))g'(x) \\ &= 99(g(x))^{98}(2x) \\ &= 99(x^{2} + 1)^{98}(2x) \\ &= 198x(x^{2} + 1)^{98} \\ \end{aligned} h(x)=f(g(x))g(x)=99(g(x))98(2x)=99(x2+1)98(2x)=198x(x2+1)98

  • 链式求导法则 (版本 2)

在这里插入图片描述
Chain rule (version 2): if y y y is a function of u u u, and u u u is a function of x x x, then d y d x = d y d u d u d x \frac{\text{d}y}{\text{d}x} = \frac{\text{d}y}{\text{d}u}\frac{\text{d}u}{\text{d}x} dxdy=dudydxdu.

y = u 99 ,   d y d u = 99 u 98 y = u^{99}, \ \frac{\text{d}y}{\text{d}u} = 99u^{98} y=u99, dudy=99u98
u = x 2 + 1 ,   d u d x = 2 x u = x^{2} + 1, \ \frac{\text{d}u}{\text{d}x} = 2x u=x2+1, dxdu=2x
h ( x ) = f ( g ( x ) ) = f ( x 2 + 1 ) = ( x 2 + 1 ) 99 h(x) = f(g(x)) = f(x^{2} + 1) = (x^{2} + 1)^{99} h(x)=f(g(x))=f(x2+1)=(x2+1)99

d y d x = d y d u d u d x = 99 u 98 × 2 x = 198 x u 98 = 198 x ( x 2 + 1 ) 98 \begin{aligned} \frac{\text{d}y}{\text{d}x} &= \frac{\text{d}y}{\text{d}u}\frac{\text{d}u}{\text{d}x} \\ &= 99u^{98} \times 2x \\ &= 198xu^{98} \\ &= 198x(x^{2} + 1)^{98} \\ \end{aligned} dxdy=dudydxdu=99u98×2x=198xu98=198x(x2+1)98

Now you just need to tidy it up by replacing u u u by x 2 + 1 x^{2} + 1 x2+1 to see that we have d y / d x = 198 x ( x 2 + 1 ) 98 \text{d}y/\text{d}x = 198x(x^{2} + 1)^{98} dy/dx=198x(x2+1)98.
使用 x 2 + 1 x^{2} + 1 x2+1 替换 u u u,得到 d y / d x = 198 x ( x 2 + 1 ) 98 \text{d}y/\text{d}x = 198x(x^{2} + 1)^{98} dy/dx=198x(x2+1)98

6. A nasty example (难以处理的例子)

7. Justification of the product rule and the chain rule (乘积法则和链式求导法则的理由)

justification /ˌdʒʌstɪfɪˈkeɪʃn/:n. 正当理由

References

[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/
[2] 普林斯顿微积分读本 (修订版), https://m.ituring.com.cn/book/1623

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/927076.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2个GitHub上最近比较火的Java开源项目

1. SpringBlade 微服务架构 标题 SpringBlade 微服务架构 摘要 SpringBlade 是一个由商业级项目升级优化而来的微服务架构,采用Spring Boot 3.2、Spring Cloud 2023等核心技术构建,遵循阿里巴巴编码规范,提供基于React和Vue的两个前端框架&am…

Ubuntu 安装 MariaDB

安装 MariaDB具体步骤 1、更新软件包索引: sudo apt update2、安装 MariaDB 服务器: sudo apt install mariadb-server3、启动 MariaDB 服务(如果未自动启动): sudo systemctl start mariadb4、设置 MariaDB 开机启…

一体化数据安全平台uDSP 入选【年度创新安全产品 TOP10】榜单

近日,由 FreeBuf 主办的 FCIS 2024 网络安全创新大会在上海隆重举行。大会现场揭晓了第十届 WitAwards 中国网络安全行业年度评选获奖名单,该评选自 2015 年举办以来一直饱受赞誉,备受关注,评选旨在以最专业的角度和最公正的态度&…

相同的二叉树

给你两棵二叉树的根节点 p 和 q ,编写一个函数来检验这两棵树是否相同。 如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。 示例 1: 输入:p [1,2,3], q [1,2,3] 输出:true示例 2&…

百度地图JSAPI WebGL v1.0类参考

百度地图JSAPI WebGL v1.0类参考 核心类 Map 此类是地图API的核心类,用来实例化一个地图。请注意WebGL版本的地图API的命名空间是BMapGL。 示例:const map new BMapGL.Map(container); 构造函数描述Map(container: String | HTMLElement, opts: Map…

【k8s】监控metrics-server

metrics-server介绍 Metrics Server是一个集群范围的资源使用情况的数据聚合器。作为一个应用部署在集群中。Metric server从每个节点上KubeletAPI收集指标,通过Kubernetes聚合器注册在Master APIServer中。为集群提供Node、Pods资源利用率指标。 就像Linux 系统一样…

AI 声音:数字音频、语音识别、TTS 简介与使用示例

在现代 AI 技术的推动下,声音处理领域取得了巨大进展。从语音识别(ASR)到文本转语音(TTS),再到个性化声音克隆,这些技术已经深入到我们的日常生活中:语音助手、自动字幕生成、语音导…

ARM CCA机密计算安全模型之硬件强制安全

安全之安全(security)博客目录导读 [要求 R0004] Arm 强烈建议所有 CCA 实现都使用硬件强制的安全(CCA HES)。本文件其余部分假设系统启用了 CCA HES。 CCA HES 是一个可信子系统的租户——一个 CCA HES 主机(Host),见下图所示。它将以下监控安全域服务从应用处理元件(P…

matlab显示sin二维图

1,新建脚本 2、保存脚本 3、脚本命令:clc 清除 脚本命令的信息 clrear all 清除全部 4工作区内容:变量啥的 x0:0.001:2*pi%% 开始 精度 中值 ysin(x) y1cos(x) figure%%产生一个屏幕 plot(x,y)%%打印坐标 title(ysin(x))%%标题 xlabel(…

一万台服务器用saltstack还是ansible?

一万台服务器用saltstack还是ansible? 选择使用 SaltStack 还是 Ansible 来管理一万台服务器,取决于几个关键因素,如性能、扩展性、易用性、配置管理需求和团队的熟悉度。以下是两者的对比分析,帮助你做出决策: SaltStack&…

Flutter 1.2:flutter配置gradle环境

1、在android的模块中进行gradle环境配置 ①在 gradle-wrapper.properties文件中将url配置为阿里云镜像,因为gradle的服务器在国外,国内下载非常慢,也可在官网进行下载 gradle版本下载 gradle版本匹配 阿里云镜像gradle下载 可以通过复制链…

vue 2 父组件根据注册事件,控制相关按钮显隐

目标效果 我不注册事件,那么就不显示相关的按钮 注册了事件,才会显示相关内容 实现思路 组件在 mounted 的时候可以拿到父组件注册监听的方法 拿到这个就可以做事情了 mounted() {console.log(this.$listeners, this.$listeners);this.show.search !…

Vue+Elementui el-tree树只能选择子节点并且支持检索

效果&#xff1a; 只能选择子节点 添加配置添加检索代码 源码&#xff1a; <template><div><el-button size"small" type"primary" clearable :disabled"disabled" click"showSign">危险点评估</el-button>…

PhPMyadmin-漏洞复现

前情条件是&#xff1a;首先将我们的PHP版本设置在5.5以上 注&#xff1a;禁止用于未授权的测试! 首先搭建环境&#xff0c;登录后台 点击》》SQL 查看当前的日志状态 SHOW VARIABLES LIKE general%;因为之前我原来做过所以general_log 是开启的&#xff0c;如果vlau 是OF…

【2024】使用Docker搭建redis sentinel哨兵模式集群全流程(包含部署、测试、错误点指正以及直接部署)

目录&#x1f4bb; 前言**Docker Compose介绍**最终实现效果 一、搭建集群1、创建文件结构2、创建redis节点3、验证节点4、创建sentinel哨兵5、验证Sentinel功能 二、spring连接1、添加依赖2、添加配置3、启动测试 三、直接部署流程1、拉取配置2、修改端口创建 前言 本篇文章主…

泷羽sec-shell编程(完结) 学习笔记

声明&#xff01; 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章&#xff0c;笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以及泷羽sec团队无关&a…

眼部按摩仪WT2605音频蓝牙语音芯片方案 单芯片实现语音提示及控制/手机无线音频传输功能

随着科技的快速发展&#xff0c;人们的生活方式也在不断改变&#xff0c;智能化、便捷化的产品逐渐成为市场的主流。眼部按摩仪作为一种结合了现代科技与健康生活理念的产品&#xff0c;受到了广大消费者的青睐。而在众多眼部按摩仪中&#xff0c;采用WT2605音频蓝牙芯片的方案…

相交链表和环形链表

&#xff08;一&#xff09;相交链表 相交链表 思路&#xff1a;先分别计算出A列表和B列表的长度&#xff0c;判断它们的尾节点是否相等&#xff0c;如果不相等就不相交&#xff0c;直接返回空。然后让两个列表中的长的列表先走它们的差距步&#xff0c;然后再一起走&#xff…

知识竞赛活动中现场用到的对讲机有哪些

在知识竞赛活动中&#xff0c;现场工作人员间一般通过对讲机进行联系和调动&#xff0c;那么&#xff0c;知识竞赛活动现场常用的对讲机品牌和型号有哪些呢&#xff0c;主要包括宝锋BF-888S、威贝特WBT-V1Plus、摩托罗拉V168、泉盛UV-K6和海能达S1等。这些对讲机各具特色&#…

reverse_re3

一、使用Exeinfo PE查壳 64无壳 二、使用IDA静态分析 1.找main&#xff0c;没有找到。按ShifeF12字符串查找&#xff0c;发现flag{md5(your input)}:md5加密&#xff0c;所以要找输入值。 2.点击后&#xff0c;发现所在函数sub_940 3.进入函数&#xff0c;使用R键将数字转换…