网络安全-安全散列函数,信息摘要SHA-1,MD5原理

安全散列函数

        单向散列函数或者安全散列函数之所以重要,不仅在于消息认证(消息摘要。数据指纹)。还有数字签名(加强版的消息认证)和验证数据的完整性。常见的单向散列函数有MD5和SHA

散列函数的要求

        散列函数的目的是文件、消息或者其它数据块产生“指纹”。为满足在消息认证中的应用,散列函数H必须具有下列性质:

        (1)H可适用于随意长度的数据块。

        (2)H能够生成固定长度的输出。

        (2)对于随意给定的x,计算H(x)相对easy,而且能够用软/硬件实现。

        (4)对于随意给定的h,找到满足H(x)=h的x在计算上不可行。满足这一特性的散列函数称之为:具备抗原像攻击性。

        (5)对于随意给定的数据块x,找到满足H(y)=H(x)的y ≠ x在计算上是不可行;满足这一特性的散列函数称之为:抗弱碰撞性。

        (6)找到满足H(x) = H(y)的随意一对(x,y)在计算上是不可行的。

满足这一特性的散列函数称之为:抗碰撞性。

        前三个性质是使用散列函数进行消息认证的实际可行要求。第四个属性,抗原像攻击,防止攻击者能够回复秘密值。抗弱碰撞性保证了对于给定的消息。不可能找到具有同样散列值的可替换消息。

        满足上面前5个性质的散列函数称之为弱散列函数。

假设还满足第6个性质则称之为强散列函数。

一般来说:能够认识散列函数的两个特点就OK,1.输出固定长度的 2. 不可逆转!

散列函数的安全性

        有两种方法能够攻击安全散列函数:password分析法和暴力攻击法。

散列函数抵抗暴力攻击的强度全然依赖于算法生成的散列码长度。

Van Oorschot和Wiener以前提出,花费1000万美元涉及一个被专门用来搜索MD5算法碰撞的机器,则平均24天内就能够找到一个碰撞。

        2004年8月中国password学家王小云教授等首次发布了提出一种寻找MD5碰撞的新方法。眼下利用该方法用普通微机几分钟内就可以找到MD5的碰撞。MD5已经呗彻底攻破。

简单散列函数

        全部的散列函数都依照以下的基本操作。把输入(消息、文件等)看成n比特块的序列。对输入用迭代方法处理一块,生成n比特的散列函数。

        一种最简单散列函数的每个数据块都依照比特异或。

例如以下所看到的

                Ci = bi1⊕ bi2⊕ … ⊕ bim

        当中:

                Ci为散列码的第i比特。1<=  i <=n;

                m为输入中n比特数据块的数目。

                bij为第j块的第i比特。

                ⊕为异或操作

        下图说明了这个操作:

上图仅仅是简单的散列函数。由于没一列都有同样的可能性。所以这个函数的有效性差。

SHA安全散列函数

        近些年,应用最广泛的散列函数是SHA。

由于其它每一种被广泛应用的散列函数都已经被证实存在这password分析学中的缺陷。接着到2005年,SHA也许仅存的安全散列算法。SHA由美国国家标准与技术研究院(NIST)开发。

● 1995年发布SHA-1
● 2002年,发布了SHA-2(SHA-256、SHA-384、SHA-512)
● 2008年,添加了SHA-224

更具体的例如以下图所看到的:

以下对SHA-512做一下介绍,其它SHA算法与之非常类似。该算法以最大长度不超过2128比特作为输入,生成512比特的消息摘要输出。输入以1024比特的数据块进行处理。

如图所看到的:

处理过程:

● 第1步、追加填充比特

填充消息使其长度模1024同余896[长度 896(模1024)]。及时消息已经是期望的长度,也总是要加入填充。填充部分是由单个比特1后接所需个数的比特0构成。

● 第2步、追加长度

将128比特的数据块追加在消息上。该数据被看作是128比特的无符号整数。它含有原始消息的长度。经过前两步,生成了1024倍数的消息。如上图所看到的。被延展的消息表示为1024比特的数据块M1,M2,M3...Mn。

结合这两点:“同余”比較难以理解,填充比特的逻辑能够这么理解:填充的目的是为了形成1024的倍数,可是,最后一个1024块的最后128比特必须保留(用于记录原始消息的长度)。举例:

原始消息895比特,那么须要填充1个比特。这样895+1+128=1024

原始消息896比特。这样的情况下,加上128字节正好是1024,可是依照规则,仍是要填充1024个字节。

原始消息897比特,897+128>1024,所以须要填充。填充1023个比特。

● 第3步、初始化散列缓冲区

用512比特的缓冲区保存散列函数中间和终于结果。缓冲区能够是8个64比特的寄存器(a,b,c,d,e,f,g,h),这些寄存器初始化为64比特的整数(十六进制):

        a=6a09e667f3bcc908

        b=bb67ae8584caa73b

        c=3c6ef372fe94f82b

        d=a54ff53a5f1d36f1

        e=510e527fade682d1

        f=9b05688c2b3e6c1f

        g=1f83d9abfb41bd6b

        h=5be0cd19137e2179

这些值以逆序的形式存储,即字的最高字节存在最低地址(最左边)字节位置。

这些字的获取方式例如以下:前8个素数取平方跟,取小数部分前64位。

● 第4步、处理1024比特的数据块消息

        算法的核心是80轮迭代构成的模块。

该模块在上图中标记为F,下图是其逻辑关系。每一轮都以512比特的缓冲区值abcdefgh作为输入。而且更新缓冲区内容。

在第一轮时,缓冲区的值是中间值Hi-1.在随意t轮。使用从当前正在处理的1024比特的数据块(Mi)导出64位比特值Wt。每一轮还使用附加常数Kt。当中0<=t<=79表示80轮中的某一轮。这些常数的获取方式例如以下:前8个素数的立方根。取小数部分的前64位。这些常数提供了64位随机串集合,能够初步消除输入数据中的不论什么规则性。第80轮输出加到第1轮输入(Hi-1)生成Hi。

缓冲区里的8个字与Hi-1中对应的字进行模264加法运算。

● 第5步、输出

当全部N个1024比特的数据块都处理完成后,从第N阶段输出的便是512比特的消息摘要。

        SHA-512算法使得散列码的随意比特都是输入端每1比特的函数。基本函数F的复杂迭代产生非常好的混淆效果;即随机取两组类似的消息也不可能生成同样的散列码。除非SHA-512隐含一些直到如今都还没有发布的弱点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/924571.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

java基础知识(常用类)

目录 一、包装类(Wrapper) (1)包装类与基本数据的转换 (2)包装类与String类型的转换 (3)Integer类和Character类常用的方法 二、String类 (1)String类介绍 1)String 对象用于保存字符串,也就是一组字符序列 2)字符串常量对象是用双引号括起的字符序列。例如:&quo…

音视频基础扫盲之认识PCM(Pulse Code Modulation,脉冲编码调制)

PCM&#xff08;Pulse Code Modulation&#xff0c;脉冲编码调制&#xff09;一种用数字表示采样模拟信号的方法。是用于将波形表示的模拟音频信号转换为数字1和0表示的数字音频信号&#xff0c;而不压缩也不丢失信息的处理技术。PCM编码的最大的优点就是音质好&#xff0c;最大…

【Zookeeper】四,Zookeeper节点类型、通知、仲裁、会话

文章目录 Zookeeper的架构znode的版本Zookeeper的节点类型层级树状结构znode的不同类型 Zookeeper监视与通知通知的类型 Zookeeper的仲裁Zk的会话会话的生命周期 Zookeeper的架构 Zookeeper的服务器端运行两种模式&#xff1a;独立模式&#xff08;standalone&#xff09;和仲…

unity | 动画模块之卡片堆叠切换

一、预览动画 可以放很多图&#xff0c;可以自己往后加&#xff0c;可以调图片x轴和y轴间距&#xff0c;可以调图片飞出方向&#xff0c;可以调堆叠方向。 图1 图片堆叠动画预览 二、纯净代码 有粉丝问我这个效果&#xff0c;最近很忙&#xff0c;没有时间细写&#xff0c;先…

Python开发环境搭建+conda管理环境

下载Miniconda 推荐从清华镜像下载安装包 Index of /anaconda/miniconda/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 打开网页后&#xff0c;下拉到最后找到Miniconda3-latest前缀的文件&#xff0c;或者网页中直接搜索Miniconda3-latest&#xff0c;都可以找…

Git——本地仓库链接并推送到多个远程仓库

步骤 1. 新建仓库init 或 删除已有仓库远程链接 // 1.新建init git init// 2.已有仓库&#xff0c;查看链接的远程仓库 git remote -v// 3.已有远程连接仓库&#xff0c;需要删除连接 git remote rm origin(或对应远程仓库名) 2.新建远程仓库 在gitee、github等托管平台创建…

shell脚本基础学习_总结篇(完结)

细致观看可以&#xff0c;访问shell脚本学习专栏&#xff0c;对应章节会有配图https://blog.csdn.net/2201_75446043/category_12833287.html?spm1001.2014.3001.5482 导语 一、shell脚本简介 1. 定义&#xff1a; 2. 主要特点&#xff1a; 3. shell脚本的基本结构 4. S…

Ubuntu20.04+ROS 进行机械臂抓取仿真:环境搭建(一)

目录 一、从官网上下载UR机械臂 二、给UR机械臂添加夹爪 三、报错解决 本文详细介绍如何在Ubuntu20.04ROS环境中为Universal Robots的UR机械臂添加夹爪。首先从官方和第三方源下载必要的软件包&#xff0c;包括UR机械臂驱动、夹爪插件和相关依赖。然后&#xff0c;针对gazeb…

23省赛区块链应用与维护(房屋租凭【下】)

23省赛区块链应用与维护(房屋租凭) 背景描述 随着异地务工人员的增多,房屋租赁成为一个广阔市场。目前,现有技术中的房屋租赁是由房主发布租赁信息,租赁信息发布在房屋中介或租赁软件,租客获取租赁信息后,现场看房,并签订纸质的房屋租赁合同,房屋租赁费用通过中介或…

数字化转型的架构蓝图:从理论到实践的全面指导

在数字经济的高速发展中&#xff0c;企业正面临全新的竞争压力。为了在数字化浪潮中保持竞争力&#xff0c;许多企业都在寻求一种系统化的方法来实现其数字化转型。这种变革不仅涉及技术创新&#xff0c;还包括业务流程的彻底重塑与组织文化的转型。要成功实现数字化转型&#…

关于node全栈项目打包发布linux项目问题总集

1.用pm2部署nest 说明&#xff1a;如果一开始将nest直接打包放到linux服务器上用pm2执行则会报错&#xff0c;这是因为tsconfig.build.tsbuildinfo文件的路径以及相关依赖问题。 报错会为&#xff1a;什么东西找不到.... 所以建议以下为步骤一步一步配置 将整个nest添加压缩包直…

实验三 z变换及离散时间LTI系统的z域分析

实验原理 有理函数z 变换的部分分式展开 【实例2-1】试用Matlab 命令对函数 X ( z ) 18 18 3 − 1 − 4 z − 2 − z − 3 X\left(z\right)\frac{18}{183^{-1} -4z^{-2} -z^{-3} } X(z)183−1−4z−2−z−318​ 进行部分分式展开&#xff0c;并求出其z 反变换。 B[18]; A…

sed awk 第二版学习(十一)—— 交互式拼写检查器 spellcheck.awk

目录 1. 脚本代码 2. 执行情况 3. 代码详解 &#xff08;1&#xff09;BEGIN 过程 &#xff08;2&#xff09;主过程 &#xff08;3&#xff09;END 过程 &#xff08;4&#xff09;支持函数 4. 附加说明 这是一个基于 UNIX spell 程序的名为 spellcheck 的 awk 脚本&a…

开源 AI 智能名片 2 + 1 链动模式 S2B2C 商城小程序源码助力品牌共建:价值、策略与实践

摘要&#xff1a;在当今数字化商业环境下&#xff0c;品牌构建已演变为企业与消费者深度共建的过程。本文聚焦于“开源 AI 智能名片 2 1 链动模式 S2B2C 商城小程序源码”&#xff0c;探讨其如何融入品牌建设&#xff0c;通过剖析品牌价值构成&#xff0c;阐述该技术工具在助力…

基于Springboot的流浪宠物管理系统

基于javaweb的流浪宠物管理系统 介绍 基于javaweb的流浪宠物管理系统的设计与实现&#xff0c;后端框架使用Springbootmybatis&#xff0c;前端框架使用Vuehrml&#xff0c;数据库使用mysql&#xff0c;使用B/S架构实现前台用户系统和后台管理员系统&#xff0c;和不同权限级别…

深度学习与持续学习:人工智能的未来与研究方向

文章目录 1. 持续学习与深度学习1.1 深度学习的局限1.2 持续学习的定义 2. 目标与心智2.1 奖励假说2.2 心智的构成 3. 对研究方法的建议3.1 日常写作记录3.2 中立对待流行趋势 1. 持续学习与深度学习 1.1 深度学习的局限 深度学习注重“瞬时学习”&#xff0c;如ChatGPT虽在语…

Pod 动态分配存储空间实现持久化存储

配置 Pod 以使用 PersistentVolume 作为存储 ​ 关于持久卷的介绍&#xff0c;可以看官方文档 https://kubernetes.io/zh-cn/docs/concepts/storage/persistent-volumes/ ​ 持久卷根据存储位置&#xff0c;可以使用本地存储和云存储&#xff0c;如果有云服务平台&#xff0c…

应急响应靶机——linux2

载入虚拟机&#xff0c;打开虚拟机&#xff1a; 居然是没有图形化界面的那种linux&#xff0c;账户密码&#xff1a;root/Inch957821.&#xff08;注意是大写的i还有英文字符的.&#xff09; 查看虚拟机IP&#xff0c;192.168.230.10是NAT模式下自动分配的 看起来不是特别舒服&…

DAMODEL丹摩 | 关于我部署与使用FLUX.1+ComfyUI生成了一位三只手的jk美少女这回事

DAMODEL丹摩 | 关于我部署与使用FLUX.1ComfyUI生成了一位三只手的jk美少女这回事 最终效果图FLUX.1简介部署流程1. 创建资源2. 登录实例3. 部署ComfyUI4. 部署FLUX.1 使用流程1. 运行FLUX.1 导入工作流 声明&#xff1a;非广告&#xff0c;为用户使用体验分享 最终效果图 FLUX.…

Linux介绍与安装指南:从入门到精通

1. Linux简介 1.1 什么是Linux&#xff1f; Linux是一种基于Unix的操作系统&#xff0c;由Linus Torvalds于1991年首次发布。Linux的核心&#xff08;Kernel&#xff09;是开源的&#xff0c;允许任何人自由使用、修改和分发。Linux操作系统通常包括Linux内核、GNU工具集、图…