【Threejs进阶教程-着色器篇】9.顶点着色器入门

【Threejs进阶教程-着色器篇】9.顶点着色器入门

  • 本系列教程第一篇地址,建议按顺序学习
  • 认识顶点着色器
    • varying介绍
    • 顶点着色器与片元着色器分别的作用
    • Threejs在Shader中的内置变量
    • 各种矩阵
    • gl_Position
  • 尝试使用顶点着色器
    • 增加分段数增强效果
  • 制作平面鼓包效果
    • 鼓包效果分析
    • 路障效果
    • 让路障效果变得圆滑
    • uniform 控制鼓包效果
  • 完整源码

本系列教程第一篇地址,建议按顺序学习

本系列目前已累计第九篇,这里直接省略了2到8篇,可以通过上方专栏来查阅前面的教程
【Threejs进阶教程-着色器篇】1. Shader入门(ShadertoyShader和ThreejsShader入门)

本篇使用到的模板代码,从这里自取一个shader模板代码即可
【模板代码】用于编写Threejs Demo的模板代码

认识顶点着色器

首先我们把着色器部分的代码拎出来逐一分析

<script type="x-shader/x-vertex" id="vertexShader">
    varying vec2 vUv;
    void main(){
        vUv = vec2(uv.x,uv.y);
        vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
        gl_Position = projectionMatrix * mvPosition;
    }

</script>
<script type="x-shader/x-fragment" id="fragmentShader">
    varying vec2 vUv;
    void main(){
        gl_FragColor = vec4(1.0,0.0,0.0,1.0);
    }
</script>

varying介绍

有人发现顶点着色器的第一行与片元着色器的第一行,完全一致,那么这个varying用来做什么的呢?

这里我们直接借用webgl编程指南211页的介绍
在这里插入图片描述

varying主要用于 顶点着色器到片元着色器传输数据,是个全局变量

现阶段,我们只需要认识到,varying声明的变量,要在顶点着色器和片元着色器都要存在,且初始值需要在顶点着色器中设置即可

了解了varying之后,我们发现,其实uv的值是从顶点着色器中传递给片元着色器的

顶点着色器与片元着色器分别的作用

现阶段我这里不打算讲渲染原理和管线那些,太繁琐,这里先简单的总结一句
后续在讲到后处理的时候,这部分内容会再细讲

顶点着色器决定外型
片元着色器决定色彩

Threejs在Shader中的内置变量

顶点着色器中使用到了几个threejs的内置变量,在下面的官方文档中有说明
Threejs内置变量-WebGLProgram
一般来说我们最需要关注的几个:
position,模型的顶点信息会传递到这里,常用于计算模型的外观和最终渲染的外型
uv,模型的uv信息会传递到这里,常用于传递给顶点着色器用于计算颜色
normal,模型的法线信息会传递到这里,常用于计算光照等高级计算

如果看完了前面的BufferGeometry教程,有没有发现这里很熟悉?
【ThreeJS基础教程-高级几何体篇】2.6 BufferGeometry与BufferAttribute

你们想的没错,这些就是threejs向shader系统传递的数据,如果这里不懂BufferGeometry的,要继续下去学习Shader,就需要去前面补一下BufferGeometry的相关知识了

各种矩阵

在顶点着色器模板代码中的第四行第五行,分别出现了modelViewMatrix和projectionMatrix这两个矩阵,现阶段先不用管,只需要记住顶点着色器最终计算是这样即可

现阶段顶点着色器的代码,在模板代码的最后两行,除了**vec4(position,1.0);**会稍作改变,其他时间不会发生大的变动

gl_Position

一般来说,顶点着色器也需要有个固定输出,gl_Position就是顶点着色器的最终输出结果,最终结果也是一个vec4类型的对象

这样,顶点着色器的代码我们就介绍完毕了,接下来我们要尝试修改一下顶点着色器,感受一下顶点着色器带来的效果

尝试使用顶点着色器

我们用个最简单的方式来操作顶点

<script type="x-shader/x-vertex" id="vertexShader">
    varying vec2 vUv;
    void main(){
        vUv = vec2(uv.x,uv.y);
        vec3 aPosition = position;
        //这里我们直接操作顶点的z轴,偏移的激进一点
        aPosition.z = sin(aPosition.x * aPosition.y) * 10.0;
        vec4 mvPosition = modelViewMatrix * vec4( aPosition , 1.0 );
        gl_Position = projectionMatrix * mvPosition;
    }

</script>

在这里插入图片描述
然后,我们运行起来之后,发现,我们的平面,扭曲了,这是因为我们的z轴发生了改变

增加分段数增强效果

这里我们修改一下addMesh()

    function addMesh() {
    	//增加到100分段
         let geometry = new THREE.PlaneGeometry(10,10,3,3);
        let material = new THREE.ShaderMaterial({
            uniforms,
            vertexShader:document.getElementById('vertexShader').textContent,
            fragmentShader:document.getElementById('fragmentShader').textContent,
            transparent:true
        })
        let mesh = new THREE.Mesh(geometry,material);
        scene.add(mesh);
    }

在这里插入图片描述
我们可以发现,增加了分段和顶点之后,我们的这个平面变化巨大,已经不再是最初的PlaneGeometry了

这样,我们就完成了一次顶点着色器的尝试

制作平面鼓包效果

首先我们把平面横过来,然后需要做一个数据变换,分段数增加到100,然后设定材质的线框模式开,不然我们等一下不好看到效果
然后修改回最初的顶点着色器代码

addMesh

    function addMesh() {
    
    	//注意这里必须旋转几何体,旋转了几何体,我们的数据才是正确的
    	//mesh.rotation是在矩阵层面修改了旋转方向,最终会传递到modelViewMatrix中
        //顶点着色器的所有教程,除非特殊说明,否则全部使用旋转几何体
        
        let geometry = new THREE.PlaneGeometry(10,10,100,100).rotateX(-Math.PI/2);
        let material = new THREE.ShaderMaterial({
            uniforms,
            vertexShader:document.getElementById('vertexShader').textContent,
            fragmentShader:document.getElementById('fragmentShader').textContent,
            transparent:true,
            wireframe:true
        })
        let mesh = new THREE.Mesh(geometry,material);
        scene.add(mesh);
    }

顶点着色器

<script type="x-shader/x-vertex" id="vertexShader">
    varying vec2 vUv;
    void main(){
        vUv = vec2(uv.x,uv.y);
        vec3 aPosition = position;
        vec4 mvPosition = modelViewMatrix * vec4( aPosition , 1.0 );
        gl_Position = projectionMatrix * mvPosition;
    }
</script>

在这里插入图片描述

鼓包效果分析

既然要制作鼓包效果,那么,我们需要一个鼓包顶点,然后鼓包顶点处的高度最高,然后依次递减,所以我们这里直接从顶点着色器来定义这个鼓包点

<script type="x-shader/x-vertex" id="vertexShader">
    varying vec2 vUv;
    void main(){
        vUv = vec2(uv.x,uv.y);
        vec3 aPosition = position;

        //0 为int类型,0.0为float类型, 如果写0,threejs会报错
        // 可以写成 .0 来替代0.0以及任何 0.X 的数字, 但是个人不是很喜欢这种写法,看着太混乱
        vec3 swelling = vec3(0.0);

        //计算鼓包点到顶点的距离
        float dis = distance(swelling,aPosition);
        dis = clamp(dis,0.0,5.0);
        aPosition.y = 5.0 - dis;


        vec4 mvPosition = modelViewMatrix * vec4( aPosition , 1.0 );
        gl_Position = projectionMatrix * mvPosition;
    }
</script>

路障效果

这里,我们先声明了鼓包点在中心点,然后,我们计算鼓包点到四周的距离,但是要做一下限制,如果大于5.0的值,则直接赋值为5.0,紧接着直接把这个计算出来的dis值丢给aPosition.y,我们得到了一个漏斗型
在这里插入图片描述
既然我们计算的dis的最大值为5,那么,我们把大小做一下交换即可,用5.0 - dis,即可把漏斗形改成路障型
在这里插入图片描述

让路障效果变得圆滑

这里我们使用指数函数来优化

我们现在知道了最高点是5,最低点为0,那么,我们就可以计算它的高度比例,然后把线性的比例换成指数型比例
在这里插入图片描述
保持最高点和最低点不变,然后我们直接带入图像上面的数学公式,即可得到我们的鼓包效果

<script type="x-shader/x-vertex" id="vertexShader">
    varying vec2 vUv;
    void main(){
        vUv = vec2(uv.x,uv.y);
        vec3 aPosition = position;

        //0 为int类型,0.0为float类型, 如果写0,threejs会报错
        // 可以写成 .0 来替代0.0以及任何 0.X 的数字, 但是个人不是很喜欢这种写法,看着太混乱
        vec3 swelling = vec3(0.0);

        //计算鼓包点到顶点的距离
        float dis = distance(swelling,aPosition);
        dis = clamp(dis,0.0,5.0);
        dis = pow( dis / 5.0, 2.0 ) * 5.0;
        aPosition.y = 5.0 - dis;


        vec4 mvPosition = modelViewMatrix * vec4( aPosition , 1.0 );
        gl_Position = projectionMatrix * mvPosition;
    }
</script>

在这里插入图片描述

uniform 控制鼓包效果

uniform亦可用于顶点着色器

我们在代码中多次使用到5.0,这个实际上是鼓包的最大高度,这里我们抽出来这个常数作为鼓包最大高度,指数函数用的2次幂,这个参数可以抽出一个参数为鼓包圆滑率,我们写到uniform和lil.gui来调试
当然,我们的鼓包中心点,也可以单独拎出来放到uniform中

顶点着色器中编写uniform与片元着色器基本一致

修改后的顶点着色器

<script type="x-shader/x-vertex" id="vertexShader">
    varying vec2 vUv;

    uniform float maxSwelling;
    uniform vec3 swellingCenter;
    uniform float swellingPower;

    void main(){
        vUv = vec2(uv.x,uv.y);
        vec3 aPosition = position;

        //计算鼓包点到顶点的距离
        float dis = distance(swellingCenter,aPosition);
        dis = clamp(dis,0.0,maxSwelling);
        dis = pow( dis / maxSwelling, swellingPower ) * maxSwelling;
        aPosition.y = maxSwelling - dis;

        vec4 mvPosition = modelViewMatrix * vec4( aPosition , 1.0 );
        gl_Position = projectionMatrix * mvPosition;
    }
</script>

修改后的addMesh()和uniforms


	let uniforms = {
        maxSwelling:{value:5.0},
        swellingCenter:{value:new THREE.Vector3()},
        swellingPower:{value:2.0}
    }

    function addMesh() {

        //注意这里必须旋转几何体,旋转了几何体,我们的数据才是正确的
        //mesh.rotation是在矩阵层面修改了旋转方向,最终会传递到modelViewMatrix中
        //顶点着色器的所有教程,除非特殊说明,否则全部使用旋转几何体

        let geometry = new THREE.PlaneGeometry(10,10,100,100).rotateX(-Math.PI/2);
        let material = new THREE.ShaderMaterial({
            uniforms,
            vertexShader:document.getElementById('vertexShader').textContent,
            fragmentShader:document.getElementById('fragmentShader').textContent,
            transparent:true,
            wireframe:true
        })
        let mesh = new THREE.Mesh(geometry,material);
        scene.add(mesh);

		//注意自己引入lil.gui
        let gui = new GUI();
        gui.add(uniforms.maxSwelling,'value',0,10).step(0.01).name('最大鼓包高度');
        gui.add(uniforms.swellingPower,'value',0,10).step(0.01).name('鼓包曲线');
        let folder = gui.addFolder('鼓包中心');
        folder.add(uniforms.swellingCenter.value,'x',-5,5);
        folder.add(uniforms.swellingCenter.value,'y',-5,5);
        folder.add(uniforms.swellingCenter.value,'z',-5,5);
    }

在这里插入图片描述

完整源码

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Title</title>
    <style>
        body{
            width:100vw;
            height: 100vh;
            overflow: hidden;
            margin: 0;
            padding: 0;
            border: 0;
        }
    </style>
</head>
<body>

<script type="importmap">
			{
				"imports": {
					"three": "../three/build/three.module.js",
					"three/addons/": "../three/examples/jsm/"
				}
			}
		</script>

<script type="x-shader/x-vertex" id="vertexShader">
    varying vec2 vUv;

    uniform float maxSwelling;
    uniform vec3 swellingCenter;
    uniform float swellingPower;

    void main(){
        vUv = vec2(uv.x,uv.y);
        vec3 aPosition = position;

        //计算鼓包点到顶点的距离
        float dis = distance(swellingCenter,aPosition);
        dis = clamp(dis,0.0,maxSwelling);
        dis = pow( dis / maxSwelling, swellingPower ) * maxSwelling;
        aPosition.y = maxSwelling - dis;

        vec4 mvPosition = modelViewMatrix * vec4( aPosition , 1.0 );
        gl_Position = projectionMatrix * mvPosition;
    }
</script>
<script type="x-shader/x-fragment" id="fragmentShader">
    varying vec2 vUv;
    void main(){
        gl_FragColor = vec4(1.0,0.0,0.0,1.0);
    }
</script>

<script type="module">

    import * as THREE from "../three/build/three.module.js";
    import {OrbitControls} from "../three/examples/jsm/controls/OrbitControls.js";
    import {GUI} from "../three/examples/jsm/libs/lil-gui.module.min.js";

    window.addEventListener('load',e=>{
        init();
        addMesh();
        render();
    })

    let scene,renderer,camera;
    let orbit;

    function init(){

        scene = new THREE.Scene();
        renderer = new THREE.WebGLRenderer({
            alpha:true,
            antialias:true
        });
        renderer.setSize(window.innerWidth,window.innerHeight);
        document.body.appendChild(renderer.domElement);

        camera = new THREE.PerspectiveCamera(50,window.innerWidth/window.innerHeight,0.1,2000);
        camera.add(new THREE.PointLight());
        camera.position.set(15,15,15);
        scene.add(camera);

        orbit = new OrbitControls(camera,renderer.domElement);
        orbit.enableDamping = true;
        scene.add(new THREE.GridHelper(10,10));
    }

    let uniforms = {
        maxSwelling:{value:5.0},
        swellingCenter:{value:new THREE.Vector3()},
        swellingPower:{value:2.0}
    }

    function addMesh() {

        //注意这里必须旋转几何体,旋转了几何体,我们的数据才是正确的
        //mesh.rotation是在矩阵层面修改了旋转方向,最终会传递到modelViewMatrix中
        //顶点着色器的所有教程,除非特殊说明,否则全部使用旋转几何体

        let geometry = new THREE.PlaneGeometry(10,10,100,100).rotateX(-Math.PI/2);
        let material = new THREE.ShaderMaterial({
            uniforms,
            vertexShader:document.getElementById('vertexShader').textContent,
            fragmentShader:document.getElementById('fragmentShader').textContent,
            transparent:true,
            wireframe:true
        })
        let mesh = new THREE.Mesh(geometry,material);
        scene.add(mesh);

        let gui = new GUI();
        gui.add(uniforms.maxSwelling,'value',0,10).step(0.01).name('最大鼓包高度');
        gui.add(uniforms.swellingPower,'value',0,10).step(0.01).name('鼓包曲线');
        let folder = gui.addFolder('鼓包中心');
        folder.add(uniforms.swellingCenter.value,'x',-5,5);
        folder.add(uniforms.swellingCenter.value,'y',-5,5);
        folder.add(uniforms.swellingCenter.value,'z',-5,5);
    }


    function render() {
        renderer.render(scene,camera);
        orbit.update();
        requestAnimationFrame(render);
    }

</script>
</body>
</html>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/924455.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu 硬盘分区并挂载

一、什么是挂载 1.挂载的定义 在 Ubuntu&#xff08;或其他 Linux 系统&#xff09;中&#xff0c;挂载&#xff08;Mount&#xff09; 是将一个存储设备或分区连接到系统的文件系统层次结构中的过程。挂载后&#xff0c;你可以通过某个目录&#xff08;挂载点&#xff09;访问…

【前端开发】一文带你快速入门 JavaScript(上)Web 前端必备程序语言 | 环境搭建与基础知识

&#x1f4af; 欢迎光临清流君的博客小天地&#xff0c;这里是我分享技术与心得的温馨角落 &#x1f4af; &#x1f525; 个人主页:【清流君】&#x1f525; &#x1f4da; 系列专栏: 运动控制 | 决策规划 | 机器人数值优化 &#x1f4da; &#x1f31f;始终保持好奇心&…

视频推拉流EasyDSS互联网直播点播平台技术特点及应用场景剖析

在数字科技日新月异的今天&#xff0c;视频直播和点播已经成为互联网内容传播的重要方式之一。而互联网直播点播平台EasyDSS作为功能强大的流媒体直播点播视频能力平台&#xff0c;提供了一站式的视频推拉流、转码、直播、点播、时移回放、存储等视频服务&#xff0c;广泛应用于…

Qt读写Usb设备的数据

Qt读写Usb设备的数据 问题:要读取usb设备进行通讯&#xff0c;qt好像没有对应的库支持。解决&#xff1a;libusbwindow下载 :Linux下载: QtUsb 开源的第三方库库里面的函数说明&#xff1a;window版本&#xff1a;Linux中也提供的直接下载测试代码&#xff1a;库下载&#xff1…

2024最新python使用yt-dlp

2024最新python使用yt-dlp下载YT视频 1.获取yt的cookie1&#xff09;google浏览器下载Get cookies.txt LOCALLY插件2&#xff09;导出cookie 2.yt-dlp下载[yt-dlp的GitHub地址](https://github.com/yt-dlp/yt-dlp?tabreadme-ov-file)1&#xff09;使用Pycharm(2024.3)进行代码…

一加ACE 3 Pro手机无法连接电脑传输文件问题

先说结论&#xff1a;OnePlus手机无法连接电脑传输数据的原因&#xff0c;大概率是一加数据线的问题。尝试其他手机品牌的数据线&#xff08;比如华为&#xff09;&#xff0c;再次尝试。 连接电脑方法&#xff1a; 1 打开开发者模式&#xff08;非必要操作&#xff09; 进入…

java:aqs实现自定义锁

aqs采用模板方式设计模式&#xff0c;需要重写方法 package com.company.aqs;import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.AbstractQueuedSynchronizer; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock;…

linux系统下如何将xz及ISO\img等格式压缩包(系统)烧写到优盘(TF卡)

最近用树莓派做了个NAS&#xff0c;效果一般&#xff0c;缺少监控及UI等&#xff0c;详细见这篇文章&#xff1a; https://blog.csdn.net/bugsycrack/article/details/135344782?spm1001.2014.3001.5501 所以下载了专门的基于树莓派的NAS系统直接使用。这篇文章是顺便复习一…

python除了熟悉的pandas,openpyxl库也很方便的支持编辑Excel表

excel表格是大家经常用到的文件格式&#xff0c;各行各业都会跟它打交道。之前文章我们介绍了使用openpyxl和xlrd库读取excel表数据&#xff0c;使用xlwt库创建和编辑excel表&#xff0c;在办公自动化方面可以方便我们快速处理数据&#xff0c;帮助我们提升效率。 python之open…

【VUE3】新版Vue3+ElementPlus全家桶开发视频项目实战

VUE 介绍 Vue (发音为 /vjuː/,类似 view) 是一款用于构建用户界面的 JavaScript 框架。它基于标准 HTML、CSS 和 JavaScript 构建,并提供了一套声明式的、组件化的编程模型,帮助你高效地开发用户界面。 Vue.js是一个MVVM(Model - View - ViewModel)的SPA框架。 Model:数…

介绍一下atol(arr);(c基础)

hi , I am 36 适合对象c语言初学者 atol(arr)&#xff1b;是返回整数(long型)&#xff0c;整数是arr数组中字符中数字 格式 #include<stdio.h> atol(arr); 返回值arr数组中的数字 未改变arr数组 #include<stdio.h> //atol(arr); 返 <stdlib> int main…

微信小程序WXSS全局样式与局部样式的使用教程

微信小程序WXSS全局样式与局部样式的使用教程 引言 在微信小程序的开发中,样式的设计与实现是提升用户体验的关键部分。WXSS(WeiXin Style Sheets)作为微信小程序的样式表语言,不仅支持丰富的样式功能,还能通过全局样式与局部样式的灵活运用,帮助开发者构建美观且易于维…

OceanBase 大数据量导入(obloader)

现需要将源数据库&#xff08;Oracle|MySQL等&#xff09;一些表的海量数据迁移到目标数据库 OceanBase 中&#xff0c;基于常规 jdbc 驱动编码的方式涉及开发工作&#xff0c;性能效率也要看编码的处理机制。 OceanBase 官方提供了的 OceanBase Migration Service (OMS) 数据…

Spring Boot框架:英语知识网站构建指南

3系统分析 3.1可行性分析 通过对本英语知识应用网站实行的目的初步调查和分析&#xff0c;提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本英语知识应用网站采用SSM框架&#xff0c;JAVA作为开发语…

路由器中继与桥接

一 . 背景 现在的路由器大多数已经开始支持多种网络连接模式&#xff0c;以下将以TP-Link迷你无线路由器为例进行展开介绍。在TP-Link迷你无线路由器上一般有AP&#xff08;接入点&#xff09;模式&#xff0c;Router&#xff08;无线路由&#xff09;模式&#xff0c;Repeate…

Paddle Inference部署推理(一)

一&#xff1a;Paddle Inference推理 简介 Paddle Inference 是飞桨的原生推理库&#xff0c;提供服务器端的高性能推理能力。由于 Paddle Inference 能力直接基于飞桨的训练算子&#xff0c;因此它支持飞桨训练出的所有模型的推理。 Paddle Inference 功能特性丰富&#xff…

前端 vue3 + element-plus + ts 对话框示例

【父组件】&#xff1a;SampleInput.vue&#xff0c;局部代码片段 引入子组件 ApplyItemChooseDialog.vue&#xff0c;定义变量&#xff0c;用于渲染和显示标识 <script>片段代码 import ApplyItemChooseDialog from "/views/accept/ApplyItemChooseDialog.vue&q…

【最优清零方案——贪心+滑动窗口:暴力/线段树/单调队列】

题目 暴力 #include <bits/stdc.h> using namespace std; using ll long long; const int N 1e6 10; int a[N]; int main() {int n, k;cin >> n >> k;ll sum 0;for (int i 1; i < n; i)cin >> a[i], sum a[i];int minn 1e9, pos;ll cnt 0…

Python爬取豆瓣电影全部分类数据并存入数据库

在当今数字化的时代&#xff0c;网络上丰富的影视资源信息吸引着众多开发者去挖掘和利用。今天&#xff0c;我就来和大家分享一段有趣的代码&#xff0c;它能够从豆瓣电影平台获取相关数据并存储到数据库中哦。 结果展示&#xff08;文末附完整代码&#xff09;&#xff1a; 目…

数据结构 ——— 归并排序算法的实现

目录 归并排序的思想 归并排序算法的实现 归并排序的思想 将已经有序的子序列合并&#xff0c;得到完全有序的序列&#xff0c;即先使每个子序列有序后&#xff0c;再使子序列段间有序 若将两个有序表合并成一个有序表&#xff0c;称为二路归并 归并排序步骤示意图&#x…