目录
- ReentrantLock(可重入锁) &Semaphore(信号量)&CountDownLatch
- ReentrantLock(可重入锁)
- 既然有了synchronized,为啥还要有ReentrantLock?
- Semaphore(信号量)
- 如何确保线程安全呢?
- CountDownLatch
ReentrantLock(可重入锁) &Semaphore(信号量)&CountDownLatch
ReentrantLock(可重入锁)
上古时期的Java中,synchronized不够强壮,功能也不够强大,也没有各种优化
ReentrantLock就是用来实现可重入锁的选择(历史遗留)
后来synchronized变得厉害了,ReentrantLock用的少了,但是仍有一席之地
synchronized也是可重入锁
传统的锁的风格,这个对象提供了两个方法: lock unlock 这个写法,就容易引起,加了锁之后,忘记解锁了
在unlock之前,触发了return或者异常,就可能引起unlock执行不到了
正确使用ReentrantLock就需要把unlock操作放到finally中
既然有了synchronized,为啥还要有ReentrantLock?
1.ReentrantLock提供了tryLock操作
lock直接进行加锁,如果加锁不成,就要阻塞
tryLock尝试进行加锁,如果加锁不成,不阻塞,直接返回false
此处通过tryLock提供了更多的“可操作空间”
2.ReentrantLock提供了公平锁的实现
ReentrantLock提供了公平锁的实现,通过队列记录加锁线程的先后顺序
synchronized是非公平锁
遵循先来后到,就是公平
3.搭配的等待通知机制不同
对于synchronized,搭配wait/notify
对于ReentrantLock,搭配 Condition类,功能比 wait/notify略强一点
实际上绝大部分开发中,使用synchronized就够用了
Semaphore(信号量)
信号量是由迪杰斯特拉提出来的
信号量也是操作系统内部给咱们提供的一个机制
操作系统对应的API被JVM封装了下,就可以通过Java代码来调用这里的相关操作了
所谓的锁,本质上也是一种特殊的信号量,
锁,可以认为就是计数值为1的信号量
释放状态,就是1
加锁状态,就是0
对于这种非0即1的信号量,称为“二元信号量”
信号量是更广义的锁
public class ThreadDemo37 {
public static void main(String[] args) throws InterruptedException {
Semaphore semaphore=new Semaphore(1);
semaphore.acquire();
System.out.println("申请1");
semaphore.acquire();
System.out.println("申请2");
semaphore.acquire();
System.out.println("申请3");
}
}
import java.util.concurrent.Semaphore;
public class ThreadDemo38 {
public static int count=0;
public static void main(String[] args) throws InterruptedException {
Semaphore semaphore=new Semaphore(1);
Thread t1=new Thread(()->{
for(int i=0;i<500;i++){
try {
semaphore.acquire();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
count++;
semaphore.release();
}
});
Thread t2=new Thread(()->{
for(int i=0;i<500;i++){
try {
semaphore.acquire();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
count++;
semaphore.release();
}
});
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println(count);
}
}
如何确保线程安全呢?
1.synchronized
2.ReentrantLock
3.CAS(原子类)
4.Semaphore
semaphore也可以用来实现生产者消费者模型
定义两个信号量
一个用来表示,队列中有多少个可以被消费的元素,sem1
另一个用来表示队列中有多少个可以放置新元素的空间 ,sem2
生产一个元素,sem1.V() , sem2.P()
消费一个元素,sem1.P() , sem2.V()
CountDownLatch
针对特定场景解决问题的小工具!
比如,多线程执行一个任务,把大的任务拆分成几个部分,由每个线程分别执行
下载一个文件,可能很大,但是可以拆成多个部分,每个线程负责下载一部分,下载完成之和,最终把下载的结果拼在一起。
像多线程下载这样的场景,最终执行完成之后,要把所有内容拼在一起
这个拼必然要等到所有线程执行完成
使用CountDownLatch就可以很方便的感知到这个事情!(比你调用很多次join要更简单方便一些)
如果使用join方式,就只能使用每个线程执行一个任务
借助CountDownLatch就可以让一个线程能执行很多个任务
import java.util.Random;
import java.util.concurrent.CountDownLatch;
public class ThreadDemo39 {
public static void main(String[] args) throws InterruptedException {
CountDownLatch latch=new CountDownLatch(10);
for(int i=0;i<10;i++){
int id=i;
Thread t=new Thread(()->{
System.out.println("任务:"+id+",开始下载");
Random random = new Random();
// [0, 5)
int time = (random.nextInt(5) + 1) * 1000;
try {
Thread.sleep(time);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
System.out.println("任务:"+id+",结束下载");
latch.countDown();
}) ;
t.start();
}
latch.await();
System.out.println("所有下载完毕");
}
}