pytorch经典训练流程

文章目录

    • @[toc]
      • 1. **经典训练流程和任务:监督学习**
        • **1.1 什么是监督学习?**
        • **1.2 为什么要设计训练流程?**
        • **1.3 怎么设计训练流程?**
        • **代码示例:监督学习的典型流程**
      • 2. **超参数设置**
        • **2.1 什么是超参数?**
        • **2.2 为什么要设置超参数?**
        • **2.3 怎么设置超参数?**
        • **代码示例:设置超参数**
      • 3. **数据集预处理(Pre-transform)**
        • **3.1 什么是数据集预处理?**
        • **3.2 为什么要预处理?**
        • **3.3 怎么做预处理?**
        • **代码示例:数据预处理**
      • 4. **数据集加载**
        • **4.1 什么是数据集加载?**
        • **4.2 为什么需要数据集加载器?**
        • **4.3 怎么加载数据集?**
        • **代码示例:数据加载**
      • 5. **数据集后处理(Transform)**
        • **5.1 什么是数据集后处理?**
        • **5.2 为什么需要后处理?**
        • **5.3 常见的后处理操作**
        • **代码示例:数据集后处理**
        • **可视化增强后的数据**
      • 6. **模型初始化、优化器初始化**
        • **6.1 什么是模型初始化?**
        • **6.2 为什么要初始化模型?**
        • **6.3 怎么初始化模型?**
        • **代码示例:模型初始化**
        • **优化器初始化**
      • 7. **多个 Epoch 的训练:梯度下降**
        • **7.1 什么是梯度下降?**
        • **7.2 为什么要多次训练(多个 Epoch)?**
        • **7.3 训练流程**
        • **代码示例:多个 Epoch 的训练**
      • 8. **中间结果打印 (Loss, Accuracy 等)**
        • **8.1 为什么打印中间结果?**
        • **8.2 什么是常见的中间结果?**
        • **8.3 怎么计算和打印中间结果?**
        • **代码示例:中间结果打印**
        • **8.4 增加验证过程**
        • **8.5 可视化训练曲线**

1. 经典训练流程和任务:监督学习

1.1 什么是监督学习?

监督学习是一种机器学习方法,模型通过已标注的数据(输入与输出)进行训练,从而学习从输入预测输出的映射关系。其目标是让模型能够在未标注的新数据上作出准确预测。

典型任务:

  • 分类任务:预测输入属于哪个类别(例如图像分类、垃圾邮件检测)。
  • 回归任务:预测连续的数值(例如房价预测、股票预测)。
1.2 为什么要设计训练流程?

监督学习的目标是最小化模型预测输出和真实输出之间的误差(称为损失)。一个标准的训练流程可以帮助我们:

  1. 有效利用数据 :通过批量化处理大数据集,逐步优化模型参数。
  2. 动态调整模型 :通过多轮迭代学习更好的参数。
  3. 评估模型性能 :通过指标(例如准确率、损失值)判断模型效果。
1.3 怎么设计训练流程?

一个典型的监督学习训练流程包括以下步骤:

  1. 准备数据(加载、预处理)。
  2. 初始化模型。
  3. 定义损失函数和优化器。
  4. 执行多个 epoch 的训练(包括前向传播、损失计算、反向传播、参数更新)。
  5. 评估模型性能。
代码示例:监督学习的典型流程

以下是一个简单的监督学习流程,用于分类任务(例如使用 MNIST 手写数字数据集):

# 1. 加载必要的库
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

# 2. 数据准备
transform = transforms.Compose([
    transforms.ToTensor(),  # 转换为张量
    transforms.Normalize((0.5,), (0.5,))  # 标准化
])

# 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)

# 3. 模型初始化
class SimpleNN(nn.Module):
    def __init__(self):
        super(SimpleNN, self).__init__()
        self.fc = nn.Sequential(
            nn.Flatten(),  # 展平输入
            nn.Linear(28 * 28, 128),  # 全连接层
            nn.ReLU(),  # 激活函数
            nn.Linear(128, 10)  # 输出层(10类别)
        )

    def forward(self, x):
        return self.fc(x)

model = SimpleNN()

# 4. 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失
optimizer = optim.SGD(model.parameters(), lr=0.01)  # 随机梯度下降优化器

# 5. 训练流程
epochs = 5
for epoch in range(epochs):
    model.train()
    running_loss = 0.0
    for batch_idx, (inputs, labels) in enumerate(train_loader):
        # 清除之前的梯度
        optimizer.zero_grad()
    
        # 前向传播
        outputs = model(inputs)
        loss = criterion(outputs, labels)
    
        # 反向传播和参数更新
        loss.backward()
        optimizer.step()
    
        running_loss += loss.item()
  
    print(f"Epoch {epoch+1}/{epochs}, Loss: {running_loss/len(train_loader):.4f}")

# 6. 模型评估
model.eval()
correct = 0
total = 0
with torch.no_grad():
    for inputs, labels in test_loader:
        outputs = model(inputs)
        _, predicted = torch.max(outputs, 1)  # 获取最大值对应的类别
        correct += (predicted == labels).sum().item()
        total += labels.size(0)

print(f"Accuracy: {100 * correct / total:.2f}%")

2. 超参数设置

2.1 什么是超参数?

超参数是那些在训练模型之前手动设置的参数,而不是通过训练自动学习的参数。超参数对模型性能和训练过程有重要影响。常见的超参数包括:

  • 学习率(learning rate):决定每次参数更新的步长大小。
  • 批量大小(batch size):决定一次训练中使用的样本数。
  • 训练轮数(epochs):模型在整个数据集上训练的完整次数。
  • 隐藏层的层数和单元数(网络结构相关)。
  • 优化器类型(如 SGD, Adam)。
2.2 为什么要设置超参数?

合理的超参数设置可以:

  1. 提升训练效率 :加速收敛,减少训练时间。
  2. 提高模型性能 :避免欠拟合或过拟合。
  3. 改善稳定性 :避免训练过程中的数值不稳定或发散。

超参数通常需要通过经验或网格搜索、随机搜索等方法来确定最佳值。

2.3 怎么设置超参数?

以下是常见的超参数设置和推荐值:

  1. 学习率 :较小值(如 0.001~0.01)通常较稳定,但训练慢;较大值(如 0.1)可能加速训练,但易导致不收敛。
  2. 批量大小 :32、64 或 128 是常用的值,GPU 通常能更好地处理较大的 batch。
  3. 训练轮数 :视数据集大小和模型复杂度而定,通常设置为 5~100。
  4. 优化器 :推荐从 Adam 开始,默认参数 lr=0.001
代码示例:设置超参数

以下是一个简单的超参数设置示例,包含了常见的超参数配置:

# 超参数定义
learning_rate = 0.01  # 学习率
batch_size = 64       # 批量大小
epochs = 10           # 训练轮数

# 数据加载
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 模型、损失函数和优化器初始化
model = SimpleNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

# 输出超参数设定
print(f"Hyperparameters:\n Learning Rate: {learning_rate}\n Batch Size: {batch_size}\n Epochs: {epochs}")

3. 数据集预处理(Pre-transform)

3.1 什么是数据集预处理?

数据集预处理是指在模型训练前对原始数据进行转换,使其适合输入到模型中。典型的预处理包括:

  • 图像归一化、缩放。
  • 缺失值填充。
  • 特征工程(如词嵌入、独热编码)。

在深度学习中,pre-transform 通常是一次性操作,处理后的数据保存到磁盘,后续训练直接加载以节省时间。

3.2 为什么要预处理?
  1. 提高模型训练效果 :例如,归一化可以加快收敛速度。
  2. 减少数据噪声 :例如,去掉异常值。
  3. 统一数据格式 :确保数据符合模型输入要求。
3.3 怎么做预处理?

以下以 MNIST 数据集为例说明预处理:

  • 归一化:将像素值从 [0, 255] 映射到 [0, 1]
  • 标准化:使数据均值为 0,标准差为 1。
代码示例:数据预处理
# 定义预处理操作
transform = transforms.Compose([
    transforms.ToTensor(),  # 转为 PyTorch 张量
    transforms.Normalize((0.5,), (0.5,))  # 标准化:均值为0,方差为1
])

# 加载并预处理数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)

# 数据加载器
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

4. 数据集加载

4.1 什么是数据集加载?

数据集加载是指将数据从存储介质中读取到内存中,并按需提供给模型训练的过程。PyTorch 提供了 DataLoader 方便进行批量化加载数据。

4.2 为什么需要数据集加载器?
  1. 批量化处理 :分批加载可以减少内存占用,加速训练。
  2. 随机性 :支持数据打乱(shuffle),有助于减少模型对数据顺序的依赖。
  3. 并行化 :支持多线程加载数据,提高数据读取效率。
4.3 怎么加载数据集?
  • DataLoader 是核心工具,可以控制批量大小、是否打乱、加载线程数等。
代码示例:数据加载
from torch.utils.data import DataLoader

# 批量加载数据
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=2)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=2)

# 查看一个 batch 的数据
data_iter = iter(train_loader)
images, labels = next(data_iter)

print(f"Batch size: {images.size()}")  # 打印形状 (batch_size, 1, 28, 28)
print(f"Labels: {labels}")             # 打印标签

下一步,将详细讲解 数据集后处理(Transform) 和其他剩余内容。

5. 数据集后处理(Transform)

5.1 什么是数据集后处理?

数据集后处理是指在每次运行训练或推理时,对加载后的数据进行动态转换操作。这些操作和预处理(Pre-transform)不同,它们会在每次访问数据时应用,而不是一次性保存到磁盘。典型操作包括:

  • 数据增强(如随机裁剪、旋转)。
  • 数据格式转换(如将图片转换为张量)。
  • 特定模型需求的格式调整。
5.2 为什么需要后处理?
  1. 增加数据多样性 :数据增强通过对原始数据的变换提高模型的泛化能力。
  2. 简化训练流程 :通过动态调整避免为每种场景重新处理数据。
  3. 满足特定需求 :根据不同模型需求生成合适的输入。
5.3 常见的后处理操作

以下列举了图像任务中常见的后处理操作:

  • 随机裁剪(RandomCrop)。
  • 随机旋转(RandomRotation)。
  • 随机翻转(RandomHorizontalFlip)。
  • 图像缩放(Resize)。
代码示例:数据集后处理

以下代码实现了动态的数据增强和标准化操作:

from torchvision import transforms

# 定义数据增强和标准化操作
transform = transforms.Compose([
    transforms.RandomHorizontalFlip(p=0.5),  # 50%概率水平翻转
    transforms.RandomRotation(degrees=10),  # 随机旋转 -10 到 10 度
    transforms.ToTensor(),                  # 转为张量
    transforms.Normalize((0.5,), (0.5,))    # 标准化
])

# 加载训练数据集(应用transform)
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)

# 数据加载器
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)

# 查看一个经过后处理的数据样本
data_iter = iter(train_loader)
images, labels = next(data_iter)

print(f"Image batch shape: {images.size()}")  # 打印形状
print(f"Label batch: {labels}")
可视化增强后的数据

你还可以可视化数据增强后的图像,直观观察后处理效果:

import matplotlib.pyplot as plt

# 可视化前几个图像
for i in range(6):
    plt.subplot(2, 3, i+1)
    plt.imshow(images[i].squeeze().numpy(), cmap='gray')
    plt.title(f"Label: {labels[i].item()}")
plt.tight_layout()
plt.show()

6. 模型初始化、优化器初始化

6.1 什么是模型初始化?

模型初始化是定义模型结构,并为模型的参数赋初值的过程。在 PyTorch 中,模型通过继承 torch.nn.Module 来构建。模型的参数在定义时会默认随机初始化。

6.2 为什么要初始化模型?
  1. 定义网络结构 :为任务设计合适的模型结构。
  2. 参数初始化 :参数初始化对训练过程至关重要,好的初始化方式可以加速收敛并减少梯度消失或爆炸问题。
6.3 怎么初始化模型?
  • PyTorch 提供了多种参数初始化方式(如 Xavier 初始化、He 初始化)。
  • 模型结构在 __init__ 方法中定义,前向计算逻辑在 forward 方法中定义。
代码示例:模型初始化

以下示例构建了一个简单的卷积神经网络(CNN):

import torch.nn as nn
import torch.nn.functional as F

class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        # 定义网络层
        self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1)  # 输入通道1,输出通道16
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
        self.fc1 = nn.Linear(32 * 7 * 7, 128)  # 全连接层
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        # 定义前向传播
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2)  # 最大池化
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2)
        x = x.view(x.size(0), -1)  # 展平
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 初始化模型
model = SimpleCNN()
print(model)
优化器初始化

优化器是用于更新模型参数的工具。在初始化时,需要指定优化器类型和学习率。

# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 打印模型的可训练参数
for name, param in model.named_parameters():
    print(name, param.shape, param.requires_grad)

7. 多个 Epoch 的训练:梯度下降

7.1 什么是梯度下降?

梯度下降是深度学习中优化模型参数的核心算法。它通过计算损失函数相对于模型参数的梯度,逐步更新参数以最小化损失。

7.2 为什么要多次训练(多个 Epoch)?
  1. 充分学习数据 :单次遍历数据(一个 epoch)通常不足以学到有效的参数。
  2. 渐进式优化 :每次迭代(mini-batch)更新参数,多个 epoch 能够进一步减少损失。
7.3 训练流程

每个 epoch 的训练包括:

  1. 前向传播 :计算模型输出和损失。
  2. 反向传播 :通过梯度计算更新参数。
  3. 评估中间结果 :打印损失、准确率等指标。
代码示例:多个 Epoch 的训练
epochs = 5
for epoch in range(epochs):
    model.train()
    total_loss = 0.0
  
    for inputs, labels in train_loader:
        optimizer.zero_grad()  # 清除梯度
        outputs = model(inputs)  # 前向传播
        loss = criterion(outputs, labels)  # 计算损失
        loss.backward()  # 反向传播
        optimizer.step()  # 参数更新
    
        total_loss += loss.item()
  
    print(f"Epoch {epoch+1}/{epochs}, Loss: {total_loss/len(train_loader):.4f}")

8. 中间结果打印 (Loss, Accuracy 等)

8.1 为什么打印中间结果?

在训练过程中打印中间结果(例如损失和准确率)有以下重要意义:

  1. 监控训练过程 :可以观察模型是否正常收敛,避免梯度爆炸或梯度消失。
  2. 调试和排错 :如果损失不减小或表现异常,可能是模型结构或超参数设置的问题。
  3. 评估性能趋势 :通过观察准确率的变化,判断模型是否欠拟合或过拟合。
8.2 什么是常见的中间结果?
  1. 训练损失(Training Loss) :表示模型在训练数据上的误差。
  2. 验证损失(Validation Loss) :表示模型在验证数据上的误差,用于监控模型的泛化能力。
  3. 训练准确率(Training Accuracy) :模型在训练数据上的分类正确率。
  4. 验证准确率(Validation Accuracy) :模型在验证数据上的分类正确率。

8.3 怎么计算和打印中间结果?
  1. 损失计算 :通过定义的损失函数 criterion 直接计算。
  2. 准确率计算 :通过比较模型输出的预测值与真实标签,统计预测正确的数量。
  3. 打印格式优化 :可以采用 print 或日志工具(如 logging)打印结果。

代码示例:中间结果打印

以下是训练过程中打印损失和准确率的完整代码示例:

# 定义一个函数计算准确率
def compute_accuracy(outputs, labels):
    _, predicted = torch.max(outputs, 1)  # 获取预测值的类别
    correct = (predicted == labels).sum().item()  # 统计正确数量
    accuracy = correct / labels.size(0)  # 计算准确率
    return accuracy

# 训练过程
epochs = 5
for epoch in range(epochs):
    model.train()
    total_loss = 0.0
    total_accuracy = 0.0
  
    for inputs, labels in train_loader:
        optimizer.zero_grad()  # 清除梯度
        outputs = model(inputs)  # 前向传播
        loss = criterion(outputs, labels)  # 计算损失
        loss.backward()  # 反向传播
        optimizer.step()  # 参数更新
    
        total_loss += loss.item()  # 累积损失
        total_accuracy += compute_accuracy(outputs, labels)  # 累积准确率
  
    avg_loss = total_loss / len(train_loader)  # 平均损失
    avg_accuracy = total_accuracy / len(train_loader)  # 平均准确率
    print(f"Epoch {epoch+1}/{epochs}, Loss: {avg_loss:.4f}, Accuracy: {avg_accuracy:.4f}")

8.4 增加验证过程

通常,在每个 epoch 的末尾会用验证集进行评估,以监控模型的泛化性能。

# 验证过程
def validate_model(model, val_loader, criterion):
    model.eval()  # 设置为评估模式
    total_loss = 0.0
    total_accuracy = 0.0
  
    with torch.no_grad():  # 禁用梯度计算
        for inputs, labels in val_loader:
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            total_loss += loss.item()
            total_accuracy += compute_accuracy(outputs, labels)
  
    avg_loss = total_loss / len(val_loader)
    avg_accuracy = total_accuracy / len(val_loader)
    return avg_loss, avg_accuracy

# 在训练中加入验证
for epoch in range(epochs):
    # 训练
    model.train()
    train_loss = 0.0
    train_accuracy = 0.0
    for inputs, labels in train_loader:
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        train_loss += loss.item()
        train_accuracy += compute_accuracy(outputs, labels)
  
    # 验证
    val_loss, val_accuracy = validate_model(model, test_loader, criterion)
  
    # 打印训练和验证结果
    print(f"Epoch {epoch+1}/{epochs}")
    print(f"  Training  - Loss: {train_loss/len(train_loader):.4f}, Accuracy: {train_accuracy/len(train_loader):.4f}")
    print(f"  Validation - Loss: {val_loss:.4f}, Accuracy: {val_accuracy:.4f}")

8.5 可视化训练曲线

为了更清楚地观察训练过程中的趋势,可以通过可视化工具绘制损失和准确率曲线:

import matplotlib.pyplot as plt

# 记录损失和准确率
train_losses, val_losses = [], []
train_accuracies, val_accuracies = [], []

for epoch in range(epochs):
    # 训练
    model.train()
    train_loss = 0.0
    train_accuracy = 0.0
    for inputs, labels in train_loader:
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        train_loss += loss.item()
        train_accuracy += compute_accuracy(outputs, labels)
  
    # 验证
    val_loss, val_accuracy = validate_model(model, test_loader, criterion)
  
    # 保存结果
    train_losses.append(train_loss / len(train_loader))
    val_losses.append(val_loss)
    train_accuracies.append(train_accuracy / len(train_loader))
    val_accuracies.append(val_accuracy)

# 绘制曲线
plt.figure(figsize=(12, 5))

# 损失曲线
plt.subplot(1, 2, 1)
plt.plot(range(epochs), train_losses, label='Train Loss')
plt.plot(range(epochs), val_losses, label='Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.title('Loss Curve')

# 准确率曲线
plt.subplot(1, 2, 2)
plt.plot(range(epochs), train_accuracies, label='Train Accuracy')
plt.plot(range(epochs), val_accuracies, label='Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.title('Accuracy Curve')

plt.tight_layout()
plt.show()

  1. 中间结果打印是训练中的重要环节,可以帮助实时了解模型的训练和验证性能。
  2. 可以通过 print 或绘制曲线,直观展示损失和准确率的变化趋势。
  3. 验证集的使用能有效监控模型的泛化性能,避免过拟合。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/923102.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Node.js的http模块:创建HTTP服务器、客户端示例

新书速览|Vue.jsNode.js全栈开发实战-CSDN博客 《Vue.jsNode.js全栈开发实战(第2版)(Web前端技术丛书)》(王金柱)【摘要 书评 试读】- 京东图书 (jd.com) 要使用http模块,只需要在文件中通过require(http)引入即可。…

互联网直播/点播EasyDSS视频推拉流平台视频点播有哪些技术特点?

在数字化时代,视频点播应用已经成为我们生活中不可或缺的一部分。监控技术与视频点播的结合正悄然改变着我们获取和享受媒体内容的方式。这一变革不仅体现在技术层面的进步,更深刻地影响了我们。 EasyDSS视频直播点播平台是一款高性能流媒体服务软件。E…

基于Boost库的搜索引擎

本专栏内容为:项目专栏 💓博主csdn个人主页:小小unicorn ⏩专栏分类:基于Boots的搜索引擎 🚚代码仓库:小小unicorn的代码仓库🚚 🌹🌹🌹关注我带你学习编程知识…

安全加固方案

交换机安全加固 查看是否关闭未使用的接口 25GE1/0/1、25GE1/0/47、25GE1/0/48需要使用,暂不关闭 system-view # interface Eth-Trunk99 shutdown quit interface Eth-Trunk100 shutdown quit interface Eth-Trunk110 shutdown quit interface 25GE1/…

Wonder3D本地部署到算家云搭建详细教程

Wonder3D简介 Wonder3D仅需2至3分钟即可从单视图图像中重建出高度详细的纹理网格。Wonder3D首先通过跨域扩散模型生成一致的多视图法线图与相应的彩色图像,然后利用一种新颖的法线融合方法实现快速且高质量的重建。 本文详细介绍了在算家云搭建Wonder3D的流程以及…

TMS FNC UI Pack 5.4.0 for Delphi 12

TMS FNC UI Pack是适用于 Delphi 和 C Builder 的多功能 UI 控件的综合集合,提供跨 VCL、FMX、LCL 和 TMS WEB Core 等平台的强大功能。这个统一的组件集包括基本工具,如网格、规划器、树视图、功能区和丰富的编辑器,确保兼容性和简化的开发。…

C# 命令行运行包

环境:net6 nuget包:Cliwrap 3.6.7 program: 相当于cmd运行命令:nuget search json static async Task Main(string[] args) {var cmd Cli.Wrap("D:\\软件\\Nuget\\nuget.exe").WithArguments(args >args.Add("…

Python 之网络爬虫

一.认识HTML 1.什么是HTML (HyperText Markup Language) HTML是超文本标记语言的缩写,它包含一系列的标签, “超文本”是一种组织信息的方式,利用HTML标记,告诉浏览器被标记的内容如何显示到浏览器页面上…

【数据分享】2001-2023年我国30米分辨率冬小麦种植分布栅格数据(免费获取)

小麦、玉米、水稻等各类农作物的种植分布数据在农业、环境、国土等很多专业都经常用到! 本次给大家分享的是我国2001-2023年逐年的30米分辨率冬小麦种植分布栅格数据!数据格式为TIFF格式,数据坐标为GCS_WGS_1984。该数据包括我国11个省份的冬…

C语言菜鸟入门·关键字·union的用法

目录 1. 简介 2. 访问成员 2.1 声明 2.2 赋值 3. 共用体的大小 4. 与typedef联合使用 5. 更多关键字 1. 简介 共用体(union)是一种数据结构,它允许在同一内存位置存储不同的数据类型,但每次只能存储其中一种类型的…

嵌入式驱动开发详解3(pinctrl和gpio子系统)

文章目录 前言pinctrl子系统pin引脚配置pinctrl驱动详解 gpio子系统gpio属性配置gpio子系统驱动gpio子系统API函数与gpio子系统相关的of函数 pinctrl和gpio子系统的使用设备树配置驱动层部分用户层部分 前言 如果不用pinctrl和gpio子系统的话,我们开发驱动时需要先…

低代码搭建crm系统实现财务管理功能模块

实例背景: CRM的项目,客户想要实现一个简单的财务记账功能,记录订单应收账款及收款记录。 具体要求: 1、要求收款时可以实时计算本次收款后的剩余应收。 2、要求记录AR的收款状态:未收款、部分收款、已收款。 实现…

C51相关实验

C51相关实验 LED //功能:1.让开发板的LED全亮,2,点亮某一个LED,3.让LED3以5Hz的频率闪动#include "reg52.h"#define LED P2 sbit led1 LED^1;void main(void) {LED 0xff;//LED全灭led1 0;while(1)//保持应用程序不退出{} }LED 输出端是高…

【测试工具JMeter篇】JMeter性能测试入门级教程(一)出炉,测试君请各位收藏了!!!

一、前言 Apache JMeter是纯Java的开源软件,最初由Apache软件基金会的Stefano Mazzocchi开发,旨在加载测试功能行为和测量性能。可以使用JMeter进行性能测试,即针对重负载、多用户和并发流量测试Web应用程序。 我们选择JMeter原因 是否测试过…

人工智能(AI)与机器学习(ML)基础知识

目录 1. 人工智能与机器学习的核心概念 什么是人工智能(AI)? 什么是机器学习(ML)? 什么是深度学习(DL)? 2. 机器学习的三大类型 (1)监督式学…

STM32WB55RG开发(5)----监测STM32WB连接状态

STM32WB55RG开发----5.生成 BLE 程序连接手机APP 概述硬件准备视频教学样品申请源码下载参考程序选择芯片型号配置时钟源配置时钟树RTC时钟配置RF wakeup时钟配置查看开启STM32_WPAN条件配置HSEM配置IPCC配置RTC启动RF开启蓝牙LED配置设置工程信息工程文件设置参考文档SVCCTL_A…

虚拟机CentOS系统通过Docker部署RSSHub并映射到主机

公告 📌更新公告 20241124-该文章已同步更新到作者的个人博客(链接:虚拟机CentOS系统通过Docker部署RSSHub并映射到主机) 一、编辑 YUM 配置文件 1、打开 CentOS 系统中的 YUM 软件仓库配置文件 vim /etc/yum.repos.d/CentOS-Ba…

React(五)——useContecxt/Reducer/useCallback/useRef/React.memo/useMemo

文章目录 项目地址十六、useContecxt十七、useReducer十八、React.memo以及产生的问题18.1组件嵌套的渲染规律18.2 React.memo18.3 引出问题 十九、useCallback和useMemo19.1 useCallback对函数进行缓存19.2 useMemo19.2.1 基本的使用19.2.2 缓存属性数据 19.2.3 对于更新的理解…

【漏洞复现】|百易云资产管理运营系统/mobilefront/c/2.php前台文件上传

漏洞描述 湖南众合百易信息技术有限公司(简称:百易云)成立于2017年是一家专注于不动产领域数字化研发及服务的国家高新技术企业,公司拥有不动产领域的数字化全面解决方案、覆盖住宅、写字楼、商业中心、专业市场、产业园区、公建、…

远程控制软件:探究云计算和人工智能的融合

在数字化时代,远程控制工具已成为我们工作与生活的重要部分。用户能够通过网络远程操作和管理另一台计算机,极大地提升了工作效率和便捷性。随着人工智能(AI)和云计算技术的飞速发展,远程控制工具也迎来了新的发展机遇…