算法模板1:排序+二分+高精度+前缀+差分

文章目录

      • 1.1 排序
        • STL sort函数
        • 快速排序算法模板
        • 归并排序算法模板
      • 1.2 二分
        • 整数二分算法模板
        • 浮点数二分算法模板
      • 1.3 高精度
        • 高精度加法
        • 高精度减法
        • 高精度乘低精度
        • 高精度除以低精度
      • 1.4 前缀和与差分
        • **一维前缀和**
        • **二维前缀和**
        • **一维差分**
        • **二维差分**

之前整理了好多算法模板,打算整理一下。
刚好可以打印出来,带板子比赛[]( ̄▽ ̄)*

1.1 排序

STL sort函数
sort(arr, arr + n); // 对 arr[0] 到 arr[n-1] 排序,默认升序
sort(arr, arr + n, greater<int>());  // 降序排序

sort(nodes.begin(), nodes.end()); //容器用迭代器排序

//cmp函数
bool cmp(int a, int b) {
    return a > b; // 降序:a 在 b 前
}
sort(arr, arr + n, cmp);

//lambda
sort(arr, arr + n, [](int a, int b) {
    return a > b; // 降序
});
快速排序算法模板
void quick_sort(int q[], int l, int r)
{
    if (l >= r) return;

    int i = l - 1, j = r + 1, x = q[l + r >> 1];
    while (i < j)
    {
        do i ++ ; while (q[i] < x);
        do j -- ; while (q[j] > x);
        if (i < j) swap(q[i], q[j]);
    }
    quick_sort(q, l, j), quick_sort(q, j + 1, r);
}

归并排序算法模板
void merge_sort(int q[], int l, int r)
{
    if (l >= r) return;

    int mid = l + r >> 1;
    merge_sort(q, l, mid);
    merge_sort(q, mid + 1, r);

    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r)
        if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
        else tmp[k ++ ] = q[j ++ ];

    while (i <= mid) tmp[k ++ ] = q[i ++ ];
    while (j <= r) tmp[k ++ ] = q[j ++ ];

    for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];
}

1.2 二分

整数二分算法模板
bool check(int x) {/* ... */} // 检查x是否满足某种性质

// 右偏
int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;    // check()判断mid是否满足性质
        else l = mid + 1;
    }
    return l;
}
// 左偏
int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

浮点数二分算法模板
bool check(double x) {/* ... */} // 检查x是否满足某种性质

double bsearch_3(double l, double r)
{
    const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求
    while (r - l > eps)
    {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }
    return l;
}

1.3 高精度

高精度加法
// C = A + B, A >= 0, B >= 0
vector<int> add(vector<int> &A, vector<int> &B)
{
    if (A.size() < B.size()) return add(B, A);

    vector<int> C;
    int t = 0;
    for (int i = 0; i < A.size(); i ++ )
    {
        t += A[i];
        if (i < B.size()) t += B[i];
        C.push_back(t % 10);
        t /= 10;
    }

    if (t) C.push_back(t);
    return C;
}

高精度减法
// C = A - B, 满足A >= B, A >= 0, B >= 0
vector<int> sub(vector<int> &A, vector<int> &B)
{
    vector<int> C;
    for (int i = 0, t = 0; i < A.size(); i ++ )
    {
        t = A[i] - t;
        if (i < B.size()) t -= B[i];
        C.push_back((t + 10) % 10);
        if (t < 0) t = 1;
        else t = 0;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

高精度乘低精度
// C = A * b, A >= 0, b >= 0
vector<int> mul(vector<int> &A, int b)
{
    vector<int> C;

    int t = 0;
    for (int i = 0; i < A.size() || t; i ++ )
    {
        if (i < A.size()) t += A[i] * b;
        C.push_back(t % 10);
        t /= 10;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back();

    return C;
}

高精度除以低精度
// A / b = C ... r, A >= 0, b > 0
vector<int> div(vector<int> &A, int b, int &r)
{
    vector<int> C;
    r = 0;
    for (int i = A.size() - 1; i >= 0; i -- )
    {
        r = r * 10 + A[i];
        C.push_back(r / b);
        r %= b;
    }
    reverse(C.begin(), C.end());
    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

1.4 前缀和与差分

  • 前缀和:用于查询为主,适合固定子区间的快速统计
  • 差分:用于修改为主,适合频繁的区间修改操作
  • 二维场景扩展了思路,可以解决棋盘、地图、图像等多维数据的问题,是动态规划和模拟算法中的重要工具。
一维前缀和

核心思想:快速求任意子区间的元素和。

  • 应用场景

    1. 求区间和:如数组中某段区间的累积和,快速查询多个子区间。
    2. 特定条件下的子数组统计:如统计满足某和的子数组个数、等差数列的前缀统计等。
    3. 优化暴力循环:在滑动窗口、双指针结合场景下减少重复计算。
    4. 动态和的判断:如 LeetCode 560 的“和为 K 的子数组”。
S[i] = a[1] + a[2] + ... a[i]
a[l] + ... + a[r] = S[r] - S[l - 1]
二维前缀和

核心思想:快速求任意矩形区域的元素和。

  • 应用场景

    1. 矩形区域查询:如地图/棋盘中矩形区域的累积值,快速实现范围统计。
    2. 统计二维频率矩阵:如统计某字符矩阵内某个字符出现次数。
    3. 处理图像/像素值矩阵:如积分图的计算,用于快速处理图像区域的统计。
    4. 最大子矩阵和:如求二维数组的子矩阵的最大和,或固定形状的区域统计。
S[i, j] = 第i行j列格子左上部分所有元素的和
以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:
S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1, y1 - 1]
一维差分

核心思想:高效处理多次区间修改操作,最终还原原数组。

  • 应用场景

    1. 区间增减问题:如“给区间加上固定值”、“统计区间操作后某值出现的频次”。
    2. 区间频次统计:如单点操作转换为区间统计,模拟更新效果。
    3. 物理量累积模拟:如力的分布计算,能量在区间上的增减。
    4. 效率优化:从 O(n⋅q)O(n \cdot q) 提升到 O(n+q)O(n + q),如对一个数组进行大量区间修改的场景。
给区间[l, r]中的每个数加上c:B[l] += c, B[r + 1] -= c
二维差分

核心思想:高效处理多次矩形区域修改操作,最终还原 原矩阵。

  • 应用场景

    1. 矩形区域增减问题:如在二维数组的某矩形区域内统一加减一个数。
    2. 累计影响模拟:如模拟一个范围的热量扩散、光照叠加。
    3. 频次矩阵构建:如对二维频次表进行增量操作,快速得到最终统计值。
    4. 动态二维修改问题:如棋盘状态更新,积木或区域重叠分析。
给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上c:
S[x1, y1] += c, S[x2 + 1, y1] -= c, S[x1, y2 + 1] -= c, S[x2 + 1, y2 + 1] += c

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/922505.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Kafka 工作流程解析:从 Broker 工作原理、节点的服役、退役、副本的生成到数据存储与读写优化

Kafka&#xff1a;分布式消息系统的核心原理与安装部署-CSDN博客 自定义 Kafka 脚本 kf-use.sh 的解析与功能与应用示例-CSDN博客 Kafka 生产者全面解析&#xff1a;从基础原理到高级实践-CSDN博客 Kafka 生产者优化与数据处理经验-CSDN博客 Kafka 工作流程解析&#xff1a…

如果在docker 容器中安装ros遇到的问题

1.在容器内部无法修改时间&#xff0c;需要在宿主机外边修改时钟。修改时钟&#xff1a; hwclock --systohc或者执行 date -s "2024-11-24 19:25:10"2.容器内部内置有opencv4.5版本&#xff0c;需要卸载&#xff0c;重新安装4.2.0版本。记录折腾好久的卸载过程。 …

排序(Java数据结构)

1. 排序的概念及引用 1.1 排序的概念 排序&#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操作。(所有的排序都是默认从小到大排序) 稳定性&#xff1a;假定在待排序的记录序列中&#xff…

AutoDL安装docker问题

在AutoDL上租了卡&#xff0c;安装docker遇到一些问题&#xff1a; 1.执行 sudo docker run hello-world 报错 docker: Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running? 解决方法 先查看docker有没有启动&#xff0c;…

ArcGIS定义投影与投影的区别(数据和底图不套合的原因和解决办法)

今天介绍一下ArcGIS中定义投影与投影的区别。 给大家解惑一下为什么经常出现自己的数据无法和底图套合的情况。 一 目录 1、ArcGIS定义投影与投影的概念区别 2、ArcGIS定义正确的坐标系 3、ArcGIS动态投影实现套合 4、ArcGIS地理坐标系转投影坐标系&#xff08;错误做法&am…

ChatGPT 桌面版发布了,如何安装?

本章教程教大家如何进行安装。 一、下载安装包 官网地址地址&#xff1a;https://openai.com/chatgpt/desktop/ 支持Windows和MacOS操作系统 二、安装步骤 Windows用户下载之后&#xff0c;会有一个exe安装包&#xff0c;点击运行安装即可。 注意事项&#xff0c;如果Windows操…

鸿蒙开发——根据背景图片来构建特定颜色的蒙版

效果图如下(文字部分马赛克处理)&#xff1a; 最近突然发现网易云和QQ音乐这些图片上方的蒙版颜色不是固定的&#xff0c;而是跟着图片内容走的&#xff0c;想看看能不能在鸿蒙实现&#xff0c;最后凭借俺寻思之力寻思出了一套流程(有bug&#xff0c;有时候蒙版直接透明了&…

clipboard

clipboard 现代复制到剪贴板。无闪光。只有 3kb 的 gzip 压缩。 安装 npm install clipboard --save第三方cdn提供商 <script src"https://cdn.jsdelivr.net/npm/clipboard2.0.11/dist/clipboard.min.js"></script>使用 data-clipboard-target"…

Matlab深度学习(四)——AlexNet卷积神经网络

网络搭建参考&#xff1a;手撕 CNN 经典网络之 AlexNet&#xff08;理论篇&#xff09;-CSDN博客 在实际工程应用中&#xff0c;构建并训练一个大规模的卷积神经网络是比较复杂的&#xff0c;需要大量的数据以及高性能的硬件。如果通过训练好的典型网络稍加改进&#xf…

《Python基础》之循环结构

目录 简介 一、for循环 1、基本语法与作用 2、使用 range() 函数配合 for 循环 3、嵌套的for循环 二、while循环 1、基本语法与作用 2、while 循环嵌套 &#xff08;1&#xff09;、while循环与while循环嵌套 &#xff08;2&#xff09;、while循环与for循环嵌套 简介 …

深入探索JMeter bin目录中的Properties文件:优化性能测试的关键

引言 在现代软件开发中&#xff0c;性能测试是确保应用质量和用户体验的重要环节。Apache JMeter作为一款流行的开源性能测试工具&#xff0c;提供了丰富的功能来模拟各种用户行为和负载情况。本文将深入探讨JMeter中的Properties&#xff08;属性&#xff09;功能&#xff0c…

第三十九篇 ShuffleNet V1、V2模型解析

摘要 ShuffleNet V1 ShuffleNet V1是由旷视科技&#xff08;Megvii&#xff0c;又称Face&#xff09;在2017年底提出的一种轻量级卷积神经网络架构。该网络专为移动设备和边缘计算环境设计&#xff0c;旨在以较低的计算资源实现高效的图像分类和其他计算机视觉任务。 特点与…

JavaScript练习——文本与图形

要求实现下面这个效果&#xff1a; 观察图片&#xff0c;我们的需求如下&#xff1a; 准备画布和上下文&#xff1a;在开始绘制之前&#xff0c;需要有一个HTML5 <canvas> 元素&#xff0c;并且获取其绘图上下文&#xff08;context&#xff09;&#xff0c;这是进行绘图…

[ubuntu]编译共享内存读取出现read.c:(.text+0x1a): undefined reference to `shm_open‘问题解决方案

问题log /tmp/ccByifPx.o: In function main: read.c:(.text0x1a): undefined reference to shm_open read.c:(.text0xd9): undefined reference to shm_unlink collect2: error: ld returned 1 exit status 程序代码 #include <stdio.h> #include <stdlib.h> #…

【redis】哈希类型详解

哈希类型详解 一、哈希类型的介绍二、哈希类型的常用命令2.1 HSET2.2 HGET2.3 HEXISTS2.4 HDEL2.5 HKEYS2.6 HAVLS2.7 HGETALL2.8 HMGET2.9 HLEN2.10 HSETNX2.11 HINCRBY2.12 HINCRBYFLOAT 三、哈希类型命令小结四、哈希类型内部编码五、哈希类型应用场景 一、哈希类型的介绍 …

单片机GPIO的8种工作模式

1、输入 GPIO_MODE_AIN:模拟输入 GPIO_MODE_IN_FLOATING:浮空输入 GPIO_MODE_IPD:下拉输入 GPIO_MODE_IPU:上拉输入 2、输出 GPIO_MODE_OUT_OD:开漏输出&#xff08;特殊情况使用&#xff09; GPIO_MODE_OUT_PP&#xff1a;推挽输出-----点灯&#xff08;通用&#…

YOLO-World解读:零基础学习开放世界模型

文章目录 一、摘要二、引言相关工作方法预训练公式模型架构可重新参数化的视觉-语言路径聚合网络&#xff08;RepVL-PAN&#xff09; 3.4 预训练方案 实验YOLO-World: 利用多样化数据集进行开放词汇对象检测的预训练方法YOLO-World: LVIS数据集上的零样本性能评估YOLO-World: 预…

深入理解下oracle 11g block组成

深层次说&#xff0c;oracle数据库的最少组成单位应该是块&#xff0c;一般默认情况下&#xff0c;oracle数据库的块大小是8kb&#xff0c;其中存储着我们平常所需的数据。我们在使用过程中&#xff0c;难免会疑问道&#xff1a;“oracle数据块中到底是怎样组成的&#xff0c;平…

《智慧教育实时数据分析推荐项目》详细分析

一、项目介绍 1、背景介绍 在互联网、移动互联网的带动下&#xff0c;教育逐渐从线下走向线上&#xff0c;在线教育近几年一直处于行业的风口浪尖&#xff0c;那随着基础设施的不断完善&#xff0c;用户需求也发生不少变化&#xff0c;因此传统教育机构、新兴互联网企业都在探…

stable-diffusion-webui 安装

一、安装 Python 3.11.8 (略) 二、下载stable-diffusion-webui cd E:\AITOOLS git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui 下载完成后&#xff1a; cd E:\AITOOLS\stable-diffusion-webui #运行 webui-user.bat 我们会发现要下载一下&#xff1a…