11.9K Star!强大的 Web 爬虫工具 FireCrawl:为 AI 训练与数据提取提供全面支持

在这个信息爆炸的时代,数据就是力量。尤其是对于开发者来说,获取并利用好数据,就意味着拥有更多的主动权和竞争力。

无论是用来训练大语言模型,还是用于增强检索生成(RAG),数据都扮演着至关重要的角色。而在这样一个数据为王的环境下,能够高效地抓取网页数据的工具就显得尤为重要了。

今天我想和大家分享一款我最近发现的宝藏开源工具:FireCrawl

这款工具可谓是网页爬虫界的顶流,不仅功能强大,还非常好用,尤其是对于那些需要大量爬取和处理网页数据的项目,FireCrawl 简直就是神器。

FireCrawl 项目简介

Firecrawl 是一款开源、优秀、尖端的 AI 爬虫工具,专门从事 Web 数据提取,并将其转换为 Markdown 格式或者其他结构化数据。

Firecrawl 还特别上线了一个新的功能:LLM Extract,即利用大语言模型(LLM)快速完成网页数据的提取,从而转换为LLM-ready的数据。

所以无论你是需要为大语言模型(如 GPT)提供数据训练,还是需要为检索增强生成(RAG)获取高质量数据,FireCrawl 都能够为你提供全面的支持。

主要功能

  • 强大的抓取能力:几乎能抓取任何网站的内容,无论是简单的静态页面,还是复杂的动态网页,它都能够应对自如。

  • 智能的爬取状态管理:提供了分页、流式传输等功能,使得大规模网页抓取变得更加高效。此外,它还具备清晰的错误提示功能,让你在爬取过程中可以快速排查问题,保证数据抓取的顺利进行。

  • 多样的输出格式:不仅支持将抓取的内容转换为 Markdown 格式,还支持将其输出为结构化数据(如 JSON)。

  • 增强 Markdown 解析:优化 Markdown 解析逻辑,能够输出更干净、更高质量的文本。

  • 全面的 SDK 支持:提供了丰富的 SDK,支持多种编程语言(如 Go、Rust 等),并全面兼容 v1 API。

  • 快速收集相关链接:新增了/map 端点,可以快速收集网页中的相关链接。这对于需要抓取大量相关内容的用户来说,是一个极其高效的功能。

FireCrawl应用场景

1. 大语言模型训练

通过抓取海量网页内容并将其转换为结构化数据,FireCrawl 能够为大语言模型(如 GPT)提供丰富的训练数据。

这对于希望提升模型表现的开发者或企业来说,FireCrawl 是一个理想的工具。

2. 检索增强生成(RAG):

FireCrawl 可以帮助用户从不同网页中获取相关数据,支持检索增强生成(RAG)任务。这意味着你可以通过 FireCrawl 获取并整理数据,用于生成更加精确、更加丰富的文本内容。

3. 数据驱动的开发项目

如果你的项目依赖大量的网页数据,比如训练语言模型、构建知识图谱、数据分析等等,FireCrawl 是一个不二之选。

它可以帮助你快速获取所需数据,并将其转换为你需要的格式,无论是 Markdown 还是 JSON,都能轻松搞定。

4. SEO 与内容优化

对于那些需要进行 SEO 优化或内容监控的项目,FireCrawl 也非常适用。

你可以利用 FireCrawl 爬取竞争对手的网站内容,分析他们的 SEO 策略,或者监控网站内容的变化,帮助你优化自己的网站。

5. 在线服务与工具集成

FireCrawl 提供了易于使用且统一的 API,支持本地部署或在线使用。

你可以将 FireCrawl 无缝集成到现有的服务或工具中,如 Langchain、Dify、Flowise 等,进一步扩展其应用能力。

安装与使用

当然 FireCrawl 是支持本地部署的,通过源码进行部署安装服务,但是依赖的语言过多,不仅有Nodejs、Python,还有Rust!还是建议在线体验!

前置条件

需要先注册 Firecrawl 并获取 API key

使用方式

官方项目中列了很多通过curl接口命令的方式,其实这样就有些繁琐!

我们可以通过各种API工具来进行请求,使用体验会更好一些。

也可以通过官方部署的网页上功能来进行,效果会更加!

最后就是开发者常用的SDK方式,这里以Python语言为例:

  • 安装 Python SDK
pip install firecrawl-py
  • 调用接口,抓取目标网页数据
from firecrawl import FirecrawlApp

app = FirecrawlApp(api_key="YOUR_API_KEY")

crawl_result = app.crawl_url('mendable.ai', {'crawlerOptions': {'excludes': ['blog/*']}})

# Get the markdown
for result in crawl_result:
    print(result['markdown'])
  • 要抓取单个 URL,需要使用 scrape_url 方法。将 URL 作为参数,并以字典形式返回抓取的数据。
url = 'https://www.xxxx.com'   
scraped_data = app.scrape_url(url)

总结

作为一名开发者,我们都知道,一个好用的工具可以大大提高我们的工作效率,而 FireCrawl 就是这样一个值得推荐的工具。

无论你是需要爬取大量数据,还是需要将网页内容转换为文档,FireCrawl 都能够帮助你轻松实现这些需求。

开源地址:https://github.com/mendableai/firecrawl

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/920643.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

云原生之k8s服务管理

文章目录 服务管理Service服务原理ClusterIP服务 对外发布应用服务类型NodePort服务Ingress安装配置Ingress规则 Dashboard概述 认证和授权ServiceAccount用户概述创建ServiceAccount 权限管理角色与授权 服务管理 Service 服务原理 容器化带来的问题 自动调度:…

前端面试题整理-前端异步编程

1. 进程、线程、协程的区别 在并发编程领域,进程、线程和协程是三个核心概念,它们在资源管理、调度和执行上有着本质的不同。 首先,进程是操作系统进行资源分配和调度的独立单位(资源分配基本单位),每个进…

动静态库:选择与应用的全方位指南

目录 1 软链接 1.1 软链接的建立方式和观察现象 1.2 软链接的原理 2 硬链接 2.1 硬链接的建立方式和观察现象 2.2 硬链接的本质 2.3 我们用户不能给目录建立硬链接 3. 动静态库复习 4 动静态库的制作 4.1 静态库的制作与使用 4.1.2 打包 4.1.3 静态库的使用 4.2 动…

【ROS2】多传感器融合、实现精准定位:robot_localization

1、简述 robot_localization在SLAM建图、导航中常用于将多个传感器融合(IMU、里程计、深度相机、GPS等),以提高定位精度,为机器人提供了在三维空间中的非线性状态估计 robot_localization包含两个状态估计节点: ekf_localization_node:扩展卡尔曼滤波(EKF),缺点是非…

极客大挑战2024wp

极客大挑战2024wp web 和misc 都没咋做出来&#xff0c;全靠pwn✌带飞 排名 密码学和re没做出几个&#xff0c;就不发了 web ez_pop 源代码 <?php Class SYC{public $starven;public function __call($name, $arguments){if(preg_match(/%|iconv|UCS|UTF|rot|quoted…

40分钟学 Go 语言高并发:并发下载器开发实战教程

并发下载器开发实战教程 一、系统设计概述 1.1 功能需求表 功能模块描述技术要点分片下载将大文件分成多个小块并发下载goroutine池、分片算法断点续传支持下载中断后继续下载文件指针定位、临时文件管理进度显示实时显示下载进度和速度进度计算、速度统计错误处理处理下载过…

李宏毅机器学习课程知识点摘要(1-5集)

前5集 过拟合&#xff1a; 参数太多&#xff0c;导致把数据集刻画的太完整。而一旦测试集和数据集的关联不大&#xff0c;那么预测效果还不如模糊一点的模型 所以找的数据集的量以及准确性也会影响 由于线性函数的拟合一般般&#xff0c;所以用一组函数去分段来拟合 sigmoi…

Spring Boot教程之五:在 IntelliJ IDEA 中运行第一个 Spring Boot 应用程序

在 IntelliJ IDEA 中运行第一个 Spring Boot 应用程序 IntelliJ IDEA 是一个用 Java 编写的集成开发环境 (IDE)。它用于开发计算机软件。此 IDE 由 Jetbrains 开发&#xff0c;提供 Apache 2 许可社区版和商业版。它是一种智能的上下文感知 IDE&#xff0c;可用于在各种应用程序…

本地Docker部署开源WAF雷池并实现异地远程登录管理界面

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

如何快速将Excel数据导入到SQL Server数据库

工作中&#xff0c;我们经常需要将Excel数据导入到数据库&#xff0c;但是对于数据库小白来说&#xff0c;这可能并非易事&#xff1b;对于数据库专家来说&#xff0c;这又可能非常繁琐。 这篇文章将介绍如何帮助您快速的将Excel数据导入到sql server数据库。 准备工作 这里&…

[产品管理-91]:产品经理的企业运营的全局思维-1

目录 前言&#xff1a;企业架构图 产品经理的企业运营全局思维 1、用户 - 用户价值与体验&#xff1a;真正的需求&#xff0c;真正的问题&#xff0c;一切的原点 2、大势 - 顺应宏观大势&#xff1a;政策趋势、行业趋势、技术趋势 3、市场 - 知己知彼&#xff1a;市场调研…

简单实现vue2响应式原理

vue2 在实现响应式时&#xff0c;是根据 object.defineProperty() 这个实现的&#xff0c;vue3 是通过 Proxy 对象实现&#xff0c;但是实现思路是差不多的&#xff0c;响应式其实就是让 函数和数据产生关联&#xff0c;在我们对数据进行修改的时候&#xff0c;可以执行相关的副…

论文解析:EdgeToll:基于区块链的异构公共共享收费系统(2019,IEEE INFOCOM 会议);layer2 应对:频繁小额交易,无交易费

目录 论文解析:EdgeToll:基于区块链的异构公共共享收费系统(2019,IEEE INFOCOM 会议) 核心内容概述 核心创新点原理与理论 layer2 应对:频繁小额交易,无交易费 论文解析:EdgeToll:基于区块链的异构公共共享收费系统(2019,IEEE INFOCOM 会议) 核心内容是介绍了一个…

基于python Django的boss直聘数据采集与分析预测系统,爬虫可以在线采集,实时动态显示爬取数据,预测基于技能匹配的预测模型

本系统是基于Python Django框架构建的“Boss直聘”数据采集与分析预测系统&#xff0c;旨在通过技能匹配的方式对招聘信息进行分析与预测&#xff0c;帮助求职者根据自身技能找到最合适的职位&#xff0c;同时为招聘方提供更精准的候选人推荐。系统的核心预测模型基于职位需求技…

SemiDrive E3 硬件设计系列---唤醒电路设计

一、前言 E3 系列芯片是芯驰半导体高功能安全的车规级 MCU&#xff0c;对于 MCU 的硬件设计部分&#xff0c;本系列将会分模块进行讲解&#xff0c;旨在介绍 E3 系列芯片在硬件设计方面的注意事项与经验&#xff0c;本文主要讲解 E3 硬件设计中唤醒电路部分的设计。 二、RTC 模…

Leetcode198. 打家劫舍(HOT100)

代码&#xff1a; class Solution { public:int rob(vector<int>& nums) {int n nums.size();vector<int> f(n 1), g(n 1);for (int i 1; i < n; i) {f[i] g[i - 1] nums[i - 1];g[i] max(f[i - 1], g[i - 1]);}return max(f[n], g[n]);} }; 这种求…

一文探究48V新型电气架构下的汽车连接器

【哔哥哔特导读】汽车电源架构不断升级趋势下&#xff0c;48V系统是否还有升级的必要&#xff1f;48V新型电气架构将给连接器带来什么改变&#xff1f; 在插混和纯电车型逐渐普及、800V高压平台持续升级的当下&#xff0c;48V技术还有市场吗? 这个问题很多企业的回答是不一定…

React学习05 - redux

文章目录 redux工作流程redux理解redux理解及三个核心概念redux核心apiredux异步编程react-redux组件间数据共享 纯函数redux调试工具项目打包 redux工作流程 redux理解 redux是一个专门用于状态管理的JS库&#xff0c;可以用在react, angular, vue 等项目中。在与react配合使…

2024年11月最新 Alfred 5 Powerpack (MACOS)下载

在现代数字化办公中&#xff0c;我们常常被繁杂的任务所包围&#xff0c;而时间的高效利用成为一项核心需求。Alfred 5 Powerpack 是一款专为 macOS 用户打造的高效工作流工具&#xff0c;以其强大的定制化功能和流畅的用户体验&#xff0c;成为众多效率爱好者的首选。 点击链…

batchnorm与layernorn的区别

1 原理 简单总结&#xff1a; batchnorn 和layernorm是在不同维度上对特征进行归一化处理。 batchnorm在batch这一维度上&#xff0c; 对一个batch内部所有样本&#xff0c; 在同一个特征通道上进行归一化。 举个例子&#xff0c; 假设输入的特征图尺寸为16x224x224x256&…