神经网络问题之:梯度不稳定

        梯度不稳定是深度学习中,特别是在训练深度神经网络时常见的一个问题,其本质涉及多个方面。

一、根本原因

        梯度不稳定问题的根本原因在于深度神经网络的结构和训练过程中的一些固有特性。随着网络层数的增加,梯度在反向传播过程中会逐层累积变化,这种变化可能导致梯度消失或梯度爆炸。

图1 梯度在反向传播过程中会逐层累积

        1. 网络层数过多:深度神经网络通常包含多个隐藏层,每一层都会对梯度进行一定的变换。当层数过多时,这种变换可能会累积,导致梯度在反向传播过程中变得非常小(梯度消失)或非常大(梯度爆炸)。

        2. 激活函数的选择:某些非线性激活函数(如Sigmoid和Tanh)在输入值非常大或非常小时,其导数会趋近于零。这会导致梯度在反向传播过程中逐渐减小,进而引发梯度消失问题。相反,如果激活函数的导数在某些区域过大,则可能导致梯度爆炸。

        3. 权重初始化不当:权重的初始值对网络的训练有着深远的影响。如果权重初始化过大或过小,都可能导致梯度在反向传播过程中不稳定。权重初始化不当会使得网络中的梯度传播不稳定,影响训练效果。

几个基本概念和反向传播过程(Back Propagation)

1. 几个基本概念

        (1)前向传播:数据从输入层开始,经过隐藏层,最终到达输出层的过程。在这个过程中,每一层的输入都是前一层的输出,而每一层的输出则作为下一层的输入。

        (2)损失函数:用于量化模型预测值与实际值之间的差异。常见的损失函数包括均方误差、交叉熵损失等

        (3)梯度:损失函数相对于网络参数的偏导数,表示了损失函数在该点处相对于参数的变化率。

        2. 反向传播步骤

        (1)计算输出层的误差:根据损失函数,计算输出层的预测值与实际值之间的差异,得到输出层的误差。

        (2)逐层反向传播误差:从输出层开始,使用链式法则逐层计算每个隐藏层的误差。链式法则允许我们将输出层的误差反向传播到每一层,并计算每层的梯度。对于每一层,我们计算该层每个神经元的梯度,这个梯度表示了损失函数相对于该神经元权重的偏导数。

        (3)更新网络参数:使用计算得到的梯度,根据梯度下降算法或其他优化算法,更新网络的权重和偏置。梯度下降算法的更新公式为:new_parameter = old_parameter - learning_rate * gradient,其中learning_rate是学习率,用于控制更新的步长。

、具体表现

梯度不稳定问题在深度神经网络的训练过程中表现为以下几种情况:

        1. 梯度消失:在反向传播过程中,梯度值逐渐减小,导致靠近输入层的隐藏层权重更新非常缓慢甚至无法更新。这主要是由于激活函数在输入值较大或较小时梯度趋近于零,以及权重初始化不当等原因造成的。

        2. 梯度爆炸:与梯度消失相反,梯度爆炸指的是在反向传播过程中梯度值变得非常大,导致权重更新过大,网络不稳定。这可能发生在网络中存在数值不稳定的操作,例如矩阵乘法中的过大值,或者在循环神经网络(RNN)中存在长期依赖问题时。

        根据前文描述,可以将梯度不稳地的具体表现表示为:

        假设神经网络每次反向传播时,对权重矩阵W中各个权重值的更新(变化量大小)即梯度为\Delta W,某一层权重矩阵的梯度等于损失函数对该层权重矩阵的偏导数。(神经网络中不同层的权重矩阵的梯度更新\Delta W是不一致的,甚至当发生梯度消失/爆炸时,数量级上都是不一致的)

\Delta W=\frac{\Delta Loss}{\Delta W}

        按照梯度下降算法的更新公式,则上一层的权重矩阵W被更新的公式为:

W_{new}=W_{old}-\alpha W_{old}

        \alpha是学习率,它控制了整个神经网络梯度下降时的速度,该值过大过小都不好;而\Delta W\approx 0会造成梯度消失,\Delta W过大则会造成梯度爆炸。

、影响与解决方案

        梯度不稳定问题对深度神经网络的训练效果和性能有着显著的影响。它会导致网络无法从输入数据中学习有效的特征表示,从而降低模型的准确性和泛化能力。为了解决梯度不稳定问题,可以采取以下措施:

  1. 选择合适的激活函数:使用ReLU及其变体(如Leaky ReLU、Parametric ReLU等)作为激活函数,这些激活函数在输入为正时具有恒定的导数,有助于缓解梯度消失问题。
  2. 合理的权重初始化:采用合适的权重初始化方法(如He初始化或Glorot初始化)来设置网络权重的初始值,以减小梯度不稳定的风险。
  3. 引入批量归一化(Batch Normalization):在每一层的输入处进行归一化操作,使每一层的输入分布更加稳定。这有助于减小内部协变量偏移问题,提高模型的收敛速度和稳定性,同时也在一定程度上缓解梯度不稳定问题。
  4. 使用残差连接(Residual Connections):通过引入残差连接来构建残差网络(Residual Networks, ResNets)。残差连接允许梯度在反向传播时直接跳过某些层,从而缓解梯度消失的现象。
  5. 调整优化算法参数:合理设置优化算法的学习率、动量等参数,以避免权重更新过快或过慢而导致的梯度消失或梯度爆炸问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/920316.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

弹幕发送功能‘简单’实现

导入依赖 <!-- websocket弹幕依赖 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId></dependency>后端代码 package com.by.danmaku;import org.springfra…

RPC-健康检测机制

什么是健康检测&#xff1f; 在真实环境中服务提供方是以一个集群的方式提供服务&#xff0c;这对于服务调用方来说&#xff0c;就是一个接口会有多个服务提供方同时提供服务&#xff0c;调用方在每次发起请求的时候都可以拿到一个可用的连接。 健康检测&#xff0c;能帮助从连…

奶龙IP联名异军突起:如何携手品牌营销共创双赢?

在快节奏的互联网消费时代&#xff0c;年轻消费群体对产品和品牌的要求越来越挑剔。因此在品牌年轻化的当下&#xff0c;一方面需要品牌自身形象也要不断追求时代感&#xff0c;另一方面品牌也需要不断引领消费者需求&#xff0c;提升竞争力和产品力。 奶龙作为近年来异军突起…

Flutter:photo_view图片预览功能

导入SDK photo_view: ^0.15.0单张图片预览&#xff0c;支持放大缩小 import package:flutter/material.dart; import package:photo_view/photo_view.dart;... ...class _MyHomePageState extends State<MyHomePage>{overrideWidget build(BuildContext context) {return…

第二课 Model模型资源导入设置检查与优化

上期我们学习了最简单的audio音效的优化&#xff0c;接下来我们继续model模型资源的优化&#xff0c;我将汇总各路大神关于模型优化的思路和方法供你和我学习。 首先我们还是要把我们优化的目标重申一遍&#xff1a; 优化的目标 1.文件体积尽可能小 2.内存占用尽可能小 3.…

RabbitMQ实现异步下单与退单

前言&#xff1a; 在电商项目中的支付模块也是一个很重要的模块&#xff0c;其中下订操作以及退订操作就是主要的操作。其次的下单是同步下单&#xff0c;也就是第三方支付、数据库扣减、积分增加、等等其他业务操作&#xff0c;等待全部执行完毕后向用户返回成功响应请求。对…

macOS 无法安装第三方app,启用任何来源的方法

升级新版本 MacOS 后&#xff0c;安装下载的软件时&#xff0c;不能在 ”安全性与隐私” 中找不到 ”任何来源” 选项。 1. 允许展示任何来源 点击 启动器 (Launchpad) – 其他 (Other) – 终端 (Terminal)&#xff1a; 打开终端后&#xff0c;输入以下代码回车&#xff1a; …

微服务即时通讯系统的实现(服务端)----(1)

目录 1. 项目介绍和服务器功能设计2. 基础工具安装3. gflags的安装与使用3.1 gflags的介绍3.2 gflags的安装3.3 gflags的认识3.4 gflags的使用 4. gtest的安装与使用4.1 gtest的介绍4.2 gtest的安装4.3 gtest的使用 5 Spdlog日志组件的安装与使用5.1 Spdlog的介绍5.2 Spdlog的安…

欧洲新车安全评鉴协会(Euro NCAP)2026 年规程的 5 项关键更新

数十年来,欧洲新车安全评鉴协会为全球车辆安全评级树立了黄金标准。该协会向来以引领潮流著称,常常在法规强制要求之前数年就采用新的安全技术。 随着 2026 年欧洲新车安全评鉴协会的更新即将到来,汽车行业急切地想知道需要格外密切关注哪些特性和技术。 尽管欧洲新车安全…

Jenkins迁移数据目录

查看当前容器挂载的目录 [roottest-server01 ~]# docker inspect -f "{{.Mounts}}" jenkins [{bind /etc/localtime /etc/localtime true rprivate} {bind /opt/jenkins_data /var/jenkins_home true rprivate}]复制数据目录到数据盘 [roottest-server01 opt…

利用 TensorFlow Profiler:在 AMD GPU 上优化 TensorFlow 模型

TensorFlow Profiler in practice: Optimizing TensorFlow models on AMD GPUs — ROCm Blogs 简介 TensorFlow Profiler 是一组旨在衡量 TensorFlow 模型执行期间资源利用率和性能的工具。它提供了关于模型如何与硬件资源交互的深入见解&#xff0c;包括执行时间和内存使用情…

二叉树——输出叶子到根节点的路径

目录 代码 算法思想 例子 思维拓展 代码 int LeaveBit(Bitree T,int flag,int g) {if (!T) {return 0;}if (T->rchild NULL && T->lchild NULL) {//cout << "empty:" << T->data << endl;s.push(T->data);while (!s.emp…

PIL学习---彩色RGB图像按通道输出

要将 RGB 图像拆分为单独的 R、G、B 通道并分别展示&#xff0c;可以通过 PIL 中的 split() 方法将图像的三个通道分开&#xff0c;并使用 matplotlib 来显示每个通道的图像。效果如下图所示&#xff1a; 代码部分&#xff1a; from PIL import Image import matplotlib.pypl…

CSS实现实现当文本内容过长时,中间显示省略号...,两端正常展示

HTML 结构解析 文档结构: <ul class"con">: 一个无序列表&#xff0c;包含多个列表项。 每个 <li class"wrap"> 表示一个列表项&#xff0c;内部有两个 <span> 元素&#xff1a; <span class"txt">: 显示文本内容。<…

ROS VRRP软路由双线组网方式

虚拟路由冗余协议 Virtual Router Redundancy Protocol (VRRP)&#xff0c;MikroTik RouteROS VRRP 协议遵循 RFC 2338。 VRRP 协议是保证访问一些资源不会中断&#xff0c;即通过多台路由器组成一个网关集合&#xff0c;如果其中一台路由器出现故障&#xff0c;会自动启用另外…

设计编程网站集:简述可扩展性系统设计(笔记)

视频连接&#xff1a;简述可扩展性系统设计 三个关键原则 无状态 松散耦合 异步处理 扩展 负载均衡 缓存 分片

openCV与eigen两种方法---旋转向量转旋转矩阵

#include <Eigen/Dense> #include <opencv2/core/eigen.hpp> #include <opencv2/opencv.hpp> using namespace cv; using namespace std; int main() {// opencv 旋转向量cv::Vec3d rvec(1.0, 2.0, 3.0);cv::Mat rotation_matrix;cv::Rodrigues(rvec, rotati…

卷积运算和卷积定理

卷积运算 卷积运算是信号处理、图像处理和深度学习中的核心概念&#xff0c;用于表示两个函数之间的相互作用。它将一个函数通过滑动窗口的方式与另一个函数结合&#xff0c;产生一个新的函数&#xff0c;反映两者的重叠程度。 1. 定义 连续信号的卷积&#xff1a; 给定两个连…

【板间连接器焊接】

一、背景 近期工作需要,用到了AX7Z020核心板(黑金),官网链接:https://www.alinx.com/detail/271。 板子打好之后,遇到了焊接问题。对自身焊接技术还是比较自信的,直接上去焊接了2个连接器。拖锡搞了3小时后,放弃了。热风枪1分钟不到就把连接器吹下来了,看引脚90%都是…

低代码开发平台搭建思考与实战

什么是低代码开发平台&#xff1f; 低代码开发平台是一种平台软件&#xff0c;人们能通过它提供的图形化配置功能&#xff0c;快速配置出满足各种特定业务需求的功能软件。 具有以下特点&#xff1a; 提供可视化界面进行程序开发0代码或少量代码快速生成应用 什么是低代码产…